REPORT DOCUMENTATION PAGE

Form Approved
OPM No. 0704-0188

1 hour Der reepONEs. INCIUOING 1he IMe 1O MviewIng NSICTONS, SeA/ChINg $183NQ dala SOUrCes Qathenng and maviaining the diata
s Durden estimale of any other aspect of thas colecton of IOrMAalion. NCACNG SURGESIDNS 10/ reducing e durden 10 Washingion

AD-A236 324
I EE

5 Jefterson Dave Highway. Sutte 1204 Aringlon. VA 22202-4302. and to the Ofcs ol Intormadon and Reguistory Atars Ot of

3 REPORT TYPE AND DATES COVERED
Final: 15 Aug 19380 to 01 Mar 1993

RN T TR IV SRR N &

Alsys Limited, AlsyCOMP_006, Version 5.3, IBM 9370 (Host & Target),

901125N1.11071

6. AUTHOR(S)
National Computing Centre Limited
Manchester, UNITED KINGDOM

S FUNDING NUMBERS

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Computing Centre Limited

Oxford Road

Manchester Ml 7ED

UNITED KINGDOM

8 PERFORMING ORGANIZATION
REPORT NUMBER

AVF_VSR_80502/76-910403

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office

United States Department of Defense

Washington, D.C. 20301-3081

10 SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13 ABSTRACT (Maximum 200 words)

Alsys Limited, AlsyCOMP_006, Version 5.3, Manchester England, IBM 9370 Model 90 (under VM/IS CMS release

5.1)(Host & Target), ACVC 1.11.

14 SUBJECT TERMS

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

15. NUMBER OF PAGES

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550

Standard Form 298, (Rev 2-89)
Prescribed by ANSI Std. 239-128

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
b1 USE OF THIS VALIDATION SUMMARY REPORT]
1.2 REFERENCES 1
1.3 ACVCTEST CLASSES 2
1.4 DEFINITIONOFTERMS 3
CHAPTER 2
2.1 WITHDRAWN TESTS i
2.2 INAPPLICABLE TESTS 1
23 TEST MODIFICATIONS 4
CHAPTER 3
31 TESTING ENVIRONMENT 1
3.2 SUMMARY OF TESTRESULTS 1
33 TEST EXECUTION 2
APPENDIX A
APPENDIX B
APPENDIX C
Vahidation Summary Report AVFE_VSR_90502/76

Alsys |imited Table of Contents - Page 1 of 1 AlsyCOMP_006 Version 53

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11. Testing was
completed on 901125,

Compiler Name and Version: AlsyCOMP_006 Vcrsion 5.3
Host Computer System: IBM 9370 Modcl 90 (under VM/IS CMS rclease 5.1)
Target Computer System: IBM 9370 Modcl 90 (under VM/IS CMS rclease 5.1)

A more detailed description of this Ada implementation is found in section 3.1 of this report.
As a result of this validation effort, Validation Certificatc #901125N1.11071 is awarded to Alsys
Limited. This certificate expires on 01 JUNE 1992.

This report has been reviewed and is approved.

AET Pk , 4/

Jane Pink
Testing Services Manager Director{ Com r & Software
The National Computing Centre Limited I Engineering Division
Oxford Road Institute for Defense Analyses
Manchester Alexandria
M1 7ED VA 22311
Fngland

Y s

Ada Joint Program Office

Dr. John Solomond

Dircctor

Department of Defense

Washington

DC 20301
Validation Summary Report AVI_VSR_90502/76
Akys [imited Page ii of iii AlsyCOMP_006 Vcrsion 53

91 5 24 019

AVF Control Number: AVF_VSR_90502/76-910403

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #901125N1.11071
Alsys Limited
AlsyCOMP_006 Version 5.3
IBM 9370 Modcl 90 (under VM/IS CMS relecase 5.1)

Prepared by
Testing Services
The National Computing Centre Limited
Oxford Road
Manchester s
M1 7ED cl y
England I im

Yooy b TN

VSR Version 90-08-15

31-00492
IR

AVIF_VSR_90502/76

Validation Summary Report

Alsys I imited Page 1 of i AlsyCOMP_006 Version 53

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

DECLARATION OF CONFORMANCE

Customer: Alsys Limited

Ada Validation Facility: The National Computing Centre Limited
Oxford Road
Manchester
M1 7ED

Uhnited Kingdom

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name: AlsyCOMP_006
Version: Version 53
Host Computer System: IBM 9370 Model 90 (under VM/IS CMS relcase 5.1)

Target Computer System: IBM 9370 Modcl 90 (under VM/IS CMS relcase 5.1)

Customer’s Declaration

I, the undersigned, representing Alsys Limited, declare that Alsys Limited has ro knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation(s) listed in this declaration.

m 23— -9p

Signature Date
Validation Summary Report <AVF_VSR_90502/76
Alsys Limited Page ni of AlsyCOMP_006 Version 53

INTRODUCTION

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada Validation Procedures
[Pro90] against the Ada Standard [Ada83] using the current Ada Compiler Validation Capability
(ACVC). This Validation Summary Report (VSR) gives an account of the testing of this Ada
implementation. For any technical terms used in this report, the reader is referred to [Pro90]. A
detailed description of the ACVC may be found in the current ACVC User's Guide {UG89).

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may make
full and frec public disciosure of this report. In the United States, this is provided in accordance with
the "Freedom of Information Act” (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant that
all statements set forth in this report are accurate and complete, or that the subject implementation
has no nonconformities to the Ada Standard other than those presented. Copics of this report are
available to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

Springficld

VA 22161

Questions regarding this report or the validation test results should be directed to the AVF which
performed this validation or to:

Ada Validation Organization
Institutce for Dclense Analyses
1801 North Beauregard Street
Alcxandria

VA 22311

1.2 REFERENCES

[AduR3] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, Fcbruary 1983 and ISO 8652-1987

Validation Summary Report AVF_VSR_90502/76

Alsys Limited Chapter 1 - Page 1 of 4 AlsyCOMP_006 Version 53

INTRODUCTION

[Pro90] Ada Compiler Validation Procedures,
Version 2.1, Ada Joint Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide,
21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains a
collection of test programs structured into six test classes: A, B, C, D, E, and L. The first letter of
a test name identifies the class to which it belongs. Class A, C, D, and E tests are executable. Class
B and class L tests are expected to produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when they are cxecuted. Three Ada library units,
the packages REPORT and SPPRT13, and the procedure CHECK_FILE are used for this purpose.
The package REPORT also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test objective. The package
SPPRT13 is used by many tests for Chapter 13 of the Ada Standard. The procedure CHECK_FILE
is used to check the contents of text files written by some of the Class C tests for Chapter 14 of the
Ada Standard. The operation of REPORT and CHECK_FILE is checked by a set of executable tests.
If these units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that all
violations of the Ada Standard are detected. Some of the class B tests contain legal Ada code which
must not be flagged illegal by the compiler. This behaviour is also verified.

Class L tests check that an Ada implementation correctly detects violation of the Ada Standard
involving multiple, separately compiled units. Errors are expccted at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be replaced by implementation-specific
values -- for example, the largest integer. A list of the values used for this implementation is
provided in Appendix A. In addition to these anticipated test modifications, additional changes may
be required to remove unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this implementation are described in section 2.3.
For cach Ada implementation, a customized test suite is produced by the AVF. This customization
consists of making the modifications described in the preceding paragraph, removing withdrawn tests
{sce section 2.1) and, possibly some inapplicable tests (see Section 3.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the customized test suite
according to the Ada Standard.

Validatioo Summary Rem nt AVF_VSR_90502/76

Alsys Limited Chapter 1 - Page 2 of 4 AlsyCOMP_006 Version 53

INTRODUCTION

14 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation

Capability (ACVC)
Ada Implementation
Ada Validation Facility
(AVF)

Ada Validation
Organization (AVO)

Compliance of an Ada
Implementation

Computer System

Conformity

Customer

Declaration of
Conformance

Host Computer System

The software and any needed hardware that have to be added to a
given host and target computer system to allow transformation of
Ada programs into executable form and execution thereof.

The means for testing compliance of Ada implementations, consisting
of the test suite, the support programs, the ACVC user’s guide and
the tcmplate for the validation summary report.

An Ada compiler with its host computer system and its target
computer system

The part of the certification body which carries out the procedures
required to establish the compliance of an Ada implementation.

The part ot the certification body that provides technical guidance for
operations of the Ada Certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or part of a
program and also for all or part of the data necessary for the
execution of the program; executes user-written or user-designated
programs; performs user-designated data manipulation, including
arithmetic operations and logic operations; and that can execute
programs that modify themselves during execution. A computer
systcm may be a stand-alone unit or may consist of several inter-
connected units.

Fulfilment by a product, process or service of all requirements
specified.

An individual or corporate entity who enters into an agreement with
an AVF which specifies the terms and conditions for AVF services
(of any kind) to be performed.

A formal statement from a customer assuring that conformity is
rcalized or attainable on the Ada implementation for which
validation status is rcalized.

A computer system where Ada source programs are transformed into
exccutable form.

Validation Summary Report

Alsys Limited

AVF_VSR_90502/76

Chapter 1 - Page 3ot 4 AlsyCOMP_006 Version 53

INTRODUCTION

Inapplicable test

Operating System

Target Computer
System

Validated Ada Compiler

Validated Ada
Implementation

Validation

Withdrawn test

A test that contains onc¢ or more test objectives found to be
irrclevant for the given Ada implementation.

Software that controls the excecution of programs and that provides
services such as resource allocation, scheduling, input/output control,
and data management. Usually, operating systems are predominantly
software, but partial or complete hardware implementations are
possible.

A computer system where the exccutable form of Ada programs are
executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully cither
by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to the
Ada programming language and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in conformity testing. A
test may be incorrect because it has an invalid test objective, fails to
meet its test objective, or contains erroncous or illegal use of the
Ada programming language.

Validation Summary Report

Alsys Limited

AVE_VSR_90502/76

Chapter 1 - Page 4 of 4 AlsyCOMP_006 Version 53

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

IMPLEMENTATION DEPENDENCIES
21 WITHDRAWN TESTS
The following tests have been withdrawn by the AVO. The rationale for withdrawing each test is

available from either the AVO or the AVF. The publication date for this list of withdrawn tests is
9C-10-12.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A AT40060A
C74308A B83022B B&3022H B83025B B83025D B83026B
BSS001L C83026A C83041A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1B06A ADI1B08SA BD2AO2A CD2A2IE

CD2A23E CDZA32A CD2A41A CD2A41E CDZASTA CD2B1S5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CDS111A CD7004C ED7005D
CD700SE AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA201E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

22 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for a given Ada
implementation. The inapplicability criteria for some tests are explained in documents issued by 1SO
and the AJPO known as Ada Issues and commonly referenced in the format Al-dddd. For this
implementation, the following tests were inapplicable for the reasons indicated; references to Ada
Issues are included as appropriate.

The following 159 tests have floating-point type declarations requiring more digits than
SYSTEM.MAX_DIGITS:

C241130..Y (11 tests) C357050..Y (11 tests)
C357060..Y (11 tests) C357070..Y (11 tests)
(C357080..Y (11 tests) C358020..Z (12 tests)
C452410..Y (11 tests) C453210..Y (11 tests)
C454210..Y (11 tests) C455210..Z (12 tests)
C455240..7Z (12 tests) C456210..Z (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)
Validation Summary Report AVE_VSR_ 90502776

Alsys |imited Chapter 2 - Page 1 of § AlsyCOMP_006 Version 53

IMPLEMENTATION DEPENDENCIES

The following 21 tests check for the predefined type LONG_INTEGER:

C35404C C45231C C45304C C45411C Cas412C
C45502C C45503C C45504C C45504F C45611C
Cis5612C C45613C C45614C C45631C C45632C
B32004D CS5BO7A B55B09C B860OLW C86006C
CD7101F

C35713D and B86001Z check for a predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

C45423A checks that the proper exception is raised if MACHINE_OVERFLOWS is TRUE for the
(loating point type FLOAT.

C45423B checks that the proper exception is raised if MACHINE_OVEKFLOWS is TRUE for the
floating point type SHORT-FLOAT

C45523A and C45622A check that the proper exception is raised if MACHINE_OVERFLOWS is
TRUE for floating point typcs with digits 5. For this implementation, MACHINE_OVERFLOWS
if FALSE.

C45531IM..P and C45532M..P (8 tests) check fixed-point opcrations for types that requirc a

SYSTEM.MAX_MANTISSA of 47 or greater; for this implementation, MAX MANTISSA is less
than 47.

C45536A, C46013B, C46031B, C46033B and C46034B contain 'SMALL representation clauses which
are not powers of two or ten.

C86001F recompiles package SYSTEM, making package TEXT_IO, and hence package REPORT,
obsolcte. For this implementation, the package TEXT_IO is dependent upon package SYSTEM.

C96005B checks for values of type DURATION'BASE that arc outside the range of DURATION.
There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a floating-point type.

CD2AS3A checks operations of a fixed-point type for which a length clause specificd a power-of-ten
type’small: this implementation does not support decimal smalls. (See 2.3).

CD2AB4A, CD2A84E, CD2AS841.J (2 tests), and CD2A840 usc representation clauses specifying
non-default sizes for access types.

BD&0OO1A, BD8003A, BDROO4A..B (2 tests), and AD8B011A use machine code inscrtions.

The tests listed in the following table are not applicable because the given file operations are
supported lor the given combination of mode and file access method.

Validation Summary Report AVFE_VSR_90502/76

Alsys Limited Chapter 2 - Page 2 0f § AlsyCOMP_006 Version 5.3

IMPLEMENTATION DEPENDENCIES

Test File Operation Mode File Access Method
CE2102D CREATE IN_FILE SEQUENTIAL 1O
CE2I02E CREATE OUT_FILE SEQUENTIAL_IO
CE2102F CREATE INOUT_FILE DIRECT I
CE21021 CREATE IN_FILE DIRECT_10
CE2102] CREATE OUT _FILE DIRECT IO
CE2102N OPEN IN_FILE SEQUENTIAL 10
CE21020 RESET IN_FILE SEQUENTIAL_10O
CE2102P OPEN OUT_FILE SEQUENTIAL IO
CE2102Q RESET OUT_FILE SEQUENTIAL 10
CE2I02R OPEN INOUT _FILE DIRECT_IO
CE2102S RESET INOUT _FILE DIRECT 10
CE2102T OPEN IN_FILE DIRECT_IO
CE2102U0 RESET IN_FILE DIRECT_IO
CE2102V OPEN OUT_FILE DIRECT_IO
CE2102W RESET OUT_FILE DIRECT_IO
CE3102E CREATE IN_FILE TEXT_IO
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE e TEXT_IO

CE31021 CRLATE OUT_FILE TEXT_IO
CE3102] OPEN IN_FILE TEXT_IO
CE3102K OPEN OUT FILE TEXT_IO

CE2107B..E (4 tests), CE2107L, CE2110B and CE2111D attempt to associatc multiple internal fiics
with the same external file when one or more files is writing or reading and writing for sequentic!
files. The proper exception is raised when multiple access is attempted.

CE2107G..H (2 tests), CE2110D, and CE2111H attempt to associate multiple internal files with the
same external file when one or more files is writing for direct files. The proper exception is raised
when mnultiple aceess is attempted.

CE2203A checks that WRITE raises USE_ERROR if the capacity of the external file is exceeded for
SEQUENTIAL_IO. This implementation does not restrict file capacity.

EE2401D checks that instantiations for DIRECT_IO for unconstrained types are supported. This
implementation requires a FORM parameter to be used to specify the maximum runtime size of any
value of the type for which 10 is to be performed.

CE2303A checks that WRITE raises USE-ERROR if the capacity of the external file is exceeded for
DIRECT_1O. This implementation docs not restrict file capacity.

CE3111B. CE3111D..E (2 tests), CE3114B, and CE3115A attempl to associate multiple internal files
with the sanie external file when one or more files is writing for text files. The proper exception is
raised when multiple access is attempted.

Validation Summary Report AVE_VSR 9050276

Alsys Lamited Chapter 2 Page 3of S AlsyCOMP_006 Version 53

IMPLEMENTATION DEPENDENCIES

CE3304A checks that USE_ERROR is raised if a call to SET_LINE_LENGTH or
SET_PAGE_LENGTH specifiecs a value that is inappropriate for the external file. This
implementation does not have inappropriate values for either line length or page length.

CE3413B checks that PAGE raises LAYOUT_ERROR when the value of the page number excecds
COUNT'LAST. For this implementation, the value of COUNT'LAST is greater than 150000 making
the checking of this objective impractical.

23 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 26 tests.

C64103A and C95084A were graded passed by Evaluation Modification as directed by the AVO.
Because this implementation’s actual values for LONG_FLOAT'SAFE_LARGE and
SHORT_FLOAT'LAST lie within one (SHORT_FLOAT) model interval of each other, the tests’
floating-point applicability check may evaluate to TRUE and yet the subsequent expected exception
nced not be raised. The AVO ruled that the implementation’s behaviour should be graded as passed
because the implementation passed the integer and fixed-point checks; the following
REPORT.FAILED messages were produced after the type conversions at line 198 in C64103A and
lines 101 and 250 in C95084A failed to raise exceptions:

C64103A: "EXCEPTION NOT RAISED AFTER CALL -P2 (B)"

CI95084A: "EXCEPTION NOT RAISED BEFORE CALL - T2 (A)"
"EXCEPTION NOT RAISED AFTER CALL - T5 (B)"

EA3004D was graded passed by Evaluation and Processing Modilication as directed by the AVO. The
lest requires that either pragma INLINE is obeyed for a function call in each of three contexts and
that thus three library units are made obsolcte by the re-compilation of the inlined function’s body,
or clse the pragma is ignored completely. This implementation obeys the pragma except when the
call is within a package specification. When the test's files are processed in the given order, only two
units are made obsolete; thus, the expected error at line 27 of file EA3004D6M is not valid and is
not flagged. To confirm that indeed the pragma is not obeyed in this one case, the test was also
processed with the files re-ordered so that the re-compilation follows only the package declaration
(and thus the other library units will not be made obsolete, as they are compiled later); a "NOT
APPLICABLE" result was produced, as expected. The revised order of files was 0-1-4-5-2-3-6.

CD2AS3A was graded inapplicable by Evaluation Modification as directed by the AVO. The test
contains a specification of a power-of-10 value as small for a fixed-point type. The AVO ruled that,
under ACVC 1 11, support of decimal smalls may be omitted.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

Validation Summary Report AVIE_VSR_90502/76

Alsys Limited Chapter 2 - Page 4 of § AlsyCOMP_006 Vcrsion 53

IMPLEMENTATION DEPENDENCIES

B23004A
B32202A
B45102A
B74401R
B97103E
BC3009C

B24007A
B32202B
B61012A
B91004A
BA1101B2
BC3204D

B24009A
B32202C
B74304A
B95069A
BA1101B4

B2R80O03A
B37004A
B74401F
B95069B
BC2001D

Validation Summary Report

Alsys Limited

Chapter 2 - Page 5of §

AVF_VSR_90502/76

AlsyCOMP_006 Version 53

PROCESSING INFORMATION

CHAPTER 3
PROCESSING INFORMATION
3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately by the information
given in the initial pages of this report.

For a point of contact for technical information about this Ada implementation system, see:

Jon Frosdick

Alsys Limited
Partridge House
Newtown Road
Henley-on-Thames
Oxfordshire

RG9 1EN

For a point of contact for sales information about this Ada implementation system, see:

John Stewart
Alsys Limited
Partridge House
Newtown Road
Henley-on-Thames
Oxfordshire

RG9 1EN

Testing of this Ada implementation was conducted at the customer’s site by a validation team from
the AVF.

32 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of the customized test
suite in accordance with the Ada Programming Language Standard, whether the test is applicable or

inapplicable; otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was obtained that conforms to the Ada
Programming Language Standard.

a) Total Number of Applicable Tests 3834
b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 255
Validation Summary Report AVE_VSR_90502/76

Alsys Limited Chapter 3 - Page 1 of 3 AlsyCOMP_006 Version 53

PROCESSING INFORMATION

d) Non-Processed 1/O Tests 0
e) Non-Processed Floating-Point Precision Tests 0
f) Total Number of Inapplicable Tests 255 (c+d+c)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation supports a file system. All
floating-point precision tests were processed because this implementation supports floating-point
precision to the extent that was tested. When this compiler was tested, the tests listed in section 2.1
had been withdrawn becausc of test errors.

33 TEST EXECUTION

A Magnetic tape containing the customized test suite (see section 1.3) was taken on-site by the
validation team for processing.

The contents of the Magnetic Tape were loaded onto a SUN 3/160 and then transferred to the IBM
9370 Model 90 using file transfer protocol.

After the test files were loaded onto the host computer, the full set of tests was processed by the Ada
implementation.

Testing was performed using command scripts provided by the customer and reviewed by the
validation team. See Appendix B for a complete listing of the prccessing options for this
implementation. It also indicates the default options. The options invoked explicitly for validation
testing during this test were:

CALLS=INLINED Allows inline insertion of subprogram code
REDUCTION=EXTENSIVE Perform extensive high level optimisations
EXPRESSIONS=EXTENSIVE Perform extensive low level optimisations
OBJECT=PEEPHOLE Perform peephole optimisations

In addition the following options were uscd to produce full compilation listings including source text.

TEXT Include full source text in listing

WARNING=NO Do not include warning messages in listing

DETAIL=NO Do not add extra detail to error messages

SHOW=NONE Do not print page hcaders or error summarics

Validation Summary Report AVF_VSR _90502/76

Alsys Limited Chapter 3 - Page 2of 3 AlsyCOMP_006 Vcersion 53

PROCESSING INFORMATION

ERROR =999
FILE_WIDTH=79
FILE_LENGTH=9999

OUTPUT=<file>

Stop after 999 crrors
Sct width of listing file to 79 columns
Disable insertion of form feeds in listing

Send listing to specified file name

Test output, compiler and linker listings, and job logs were captured on Magnetic tape and archived
at the AVF. The listings examined on-site by the validation team were also archived.

Validation Summary Report

Alsys Limited

Chapter 3 - Page 3of 3 AlsyCOMP_006 Version 53

AVE_VSR_90502/76

—

MACRO PARAMETERS

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. The meaning and
purpose of these parameters are explained in [UG89]. The parameter values are presented in two
tables. The first table lists the valued that are defined in terms of the maximum input-line length,
which is the value for SMAX_IN-LEN--also listed here. These values are expressed here as Ada
string aggregates, where "V" represents the maximum input-line length.

Macre Parameter Macro Value

SMAX_IN_LEN 255

SBIG_ID1 (1.V-1 =>"A", V => ")

$BIG_ID2 (1.V-1 => A",V => 27

SBIG_ID3 (1.V2 => A") & '3 & (1.V-1-V2 => 'A))
SBIG_ID4 (1.VR =>"A) & 4 & (1.V-1-V2 =>"A")
SBIG_INT_LIT (1.V-3 =>'0") & "298"

$BIG_REAL_LIT (1.V-5 =>'0") & "690.0"

SBIG_STRING1 " & (1LVR2 =>A) &

$BIG_STRING2 & (1LV-I-VR => AN &' & ™

SBLANKS (1.V-20 => ")
SMAX_LEN_INT_BASED_LITERAL 2" & (1.V-5 =>'0") & "11"

$SMAX_LEN_REAL BASED_LITERAL "16:" & (1.V-7 =>'0") & "F.E:"
$MAX_STRING_LITERAL " & (1.V2=>"AN &

Validation Summary Report AVF_VSR_90502/76
Alsys Limited Appendix A - Page 1 of 4 AlsyCOMP_006 Version 53

MACRO PARAMETERS

MACRO PARAMETERS

The following table lists all of the other macro parameters and their respective values.

Macro Parameter

SACC_SIZE
SALIGNMENT
$COUNT_LAST
$SDEFAULT_MEM SIZE
SDEFAULT_STOR_UNIT
$DEFAULT_SYS_NAME
$DELTA_DOC
$SENTRY_ADDRESS
SENTRY_ADDRESS]
$ENTRY_ADDRESS2
$FIELD_LAST
$FILE_TERMINATOR
$FIXED_NAME
$SFLOAT_NAME
$FORM_STRING

SFORM_STRING?2

$GREATER_THAN_DURATION

Macro Value

32

4

2147483647

4294967296

8

5370

2:1.0:E-31
SYSTEM.NULL_ADDRESS
SYSTEM.NULL_ADDRESS
SYSTEM.NULL_ADDRESS
255

NO_SUCH_TYPE
NO_SUCH_TYPE
"LRECL=>80,RECFM=F"
CANNOT_RESTRICT_FILE_CAPACITY

100000.0

$GREATER_THAN_DURATION_BASE_LAST

$GREATER_THAN_FLOAT_BASE_LAST

$GREATER_THAN_FLOAT_SAFE_LARGE

10000000.0
1.0E+80

16:0.FFFF_FFFF_FFFF_F9:E63

Validation Summary Report

Alsys Limitod

AVI_VSR_90502/76

Appendix A - Page 2 of 4 AlsyCOMP_006 Version 53

MACRO PARAMETERS

SGREATER_THAN_SHORT FLOAT_SAFE_LARGE

SHIGH_PRIORITY
SILLEGAL_EXTERNAL_FILE_NAME!

SILLEGAL_EXTERNAL_FILE_NAME2

SINAPPROPRIATE_LINE_LENGTH
SINAPPROPRIATE_PAGE_LENGTH
SINCLUDE_PRAGMAL
SINCLUDE_PRAGMA2
SINTEGER_FIRST
SINTEGER_LAST
SINTEGER_LAST_PLUS _1
SINTERFACE_LANGUAGE
$LESS_THAN_DURATION
$LESS_THAN_DURATION_BASE_FIRST
SLINE_TERMINATOR
SLOW_PRIORITY
$MACHINE_CODE_STATEMENT
SMACHINE_CODE_TYPE
SMANTISSA_DOC

$MAX_DIGITS

SMAX_INT

$MAX_INT_PLUS_I

16:0.FFFF_F9:E63

10

TOOLONGNAME TOOLONGTYPE

TOOLONGMODE

-1

-1

PRAGMA INCLUDE ("A23006D1 TST")

PRAGMA INCLUDE ("B28006D1 TST")

2147483648
2147483647
2147483648
ASSEMBLER
-100000.0
~10000000.0

1

NULL;
NC_SUCH_TYPE
31

18

2147483647

2147483648

Validation Summary Report

Alsys Limited

Appendix A - Page 3 of 4

AVF_VSR_90502/76

AlsyCOMP_006 Version 5.3

MACRO PARAMETERS

SMIN_INT

SNAME

SNAME_LIST
$NAME_SPECIFICATION1
SNAME_SPECIFICATION2
$NAME_SPECIFICATION3
$NEG_BASED_INT
SNEW_MEM _SIZE
$NEW_STOR_UNIT

SNEW_SYS_NAME

SPAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE_SIZE
$TICK
$VARIABLE_ADDRESS
$VARIABLE_ADDRESSI]
$VARIABLE_ADDRESS?

$YOUR_PRAGMA

-2147483648
SHORT_SHORT_INTEGER
180X86.180386,MC680X0,S370, TRANSPUTER . VAX
X2120A FILE Al

X2120B FILE A2

X3119A FILE Al
16:FFFFFFFF:

0

0

180X86

180386

MC680X0

TRANSPUTER
VAX

ASCILFF

NEW INTEGER;
NO_SUCH_MACHINE_CODE_TYPE
32

10240

0.01

V_ADDRESS

V_ADDRESSI

V_ADDRESS2

RMODE

Validation Summary Report

Alsys Limited

Appendix A - Page 4 of 4

AVE_VSR_90502/76

AlsyCOMP_006 Version 53

COMPILATION SYSTEM OPTIONS

APPENDIX B
COMPILATION SYSTEM OPTIONS
Include a separate list of options and their meanings for each of the software systems used in this
validation. A software system must be the compiler and could be the linker, the loader, the binder,

cte. (Version numbers should be included)

Compiler Options

SOURCE=file_name The name of the sourcc file.
LIBRARY =library_name The name of the Ada program library.
ANNOTATE="" User specified character string annotating compilation unit

as stored in library.

LEVEL=UPDATE Compilation level - complete compilation of source code into
object code and update of program library.

ERRORS=999 Number of errors permitted before compilation is
terminated.

CHECKS=ALL All run time checks to be performed, except those explicitly
suppressed by use of pragma SUPPRESS.

GENERICS=INLINE Place code of generics instantiations inline in the same unit
as the instantiation rather than in separate units,

MEMORY =500 Number of Kbytes reserved in memory for compiler data
(before swapping commences).

OUTPUT=file_name Compilation listing file name.

TEXT=YES or NO Controls inclusion of full source test in the compilation

listing. Set to YES for tests requiring compilation listings (ic
B tests). Set to NO for tests not requiring compilation
listings (ie non-B tests).

WARNING=NO Do not include warning messages in the compilation listing.

SHOW=NONE Do not print a header on compilation listing pages, nor an
error summary at the end.

Vahdation Summary Report AVF_VSR_90502/76

Alsys 1 imited Appendix B - Page 1 of 3 AlsyCOMP_006 Version 53

COMPILATION SYSTEM OPTIONS

DETAIL=NO

ASSEMBLY=NONE

STACK=1024

GLOBAL=1024

UNNESTED=16

CALLS=INLINED

REDUCTION=EXTENSIVE or
NONE

EXPRESSIONS=EXTENSIVE or
NONE
OBJECT=PEEPHOLE

COPY=NO

DEBUG-NO
TREE=NO
FILE_WIDTH=79

FILE_LENGTH=9999

Do not print extra detail in error messages in the
compilation listing.

Do not include an assembly listing of generated code in the
compilation listing.

Maximum size in bytes for objects allocated in the static part
of a stack frame. Objects bigger than this limit are allocated
in the dynamic part of a stack frame.

Maximum size in bytes for objects allocated in the global
data area of a compilation unit. Objects bigger than this
limit are allocated on the program heap.

Maximum size in bytes for objects allocated in the stack
frame of the enclosing unit of a separately compiled package
body. Objects bigger than this limit are allocated in the
frame of the separate package body itself.

Allow inline insertion of code for subprograms.

Controls the optimisation of run-time checks and remove
dcad code. Set to EXTENSIVE for AlsyCOMP_006,
implying full optimisation. Set to NONE for
AlsyCOMP_023, implying no optimisation.

Controls the optimisation of expression evaluation. Set to
extensive for AlsyCOMP_006, implying full optimisation. Set
to NONE for AlsyCOMP_023, implying no optimisation.

Optimise locally the object code as it is generated.

Do not save a representation of the source code in the
program library.

Do not save information for debugging.
Do not save information for cross referencing.
Width of compilation listing page in columns.

Length of compilation listing page in lines (effectively
unpaginated).

Validation Summary Report

Alsys Limited

AVF_VSR_90502/76

Appendix B - Page 2 of 3 AlsyCOMP_006 Version 53

COMPILATION SYSTEM OPTIONS

Binder Options
PROGRAM=unit_name
LIBRARY =library_name
LEVEL=BIND
OBIJECT=file name

UNCALLED=REMOVE

SLICE=1000

MAP_TASKS=NONE

MAIN =64

TASK=16

HISTORY=NO

SIZE=256

INCREMENT =4

OUTPUT=file_name

DATA=NO

WARNING=NO
DEBUG=NO

CUI_FILE=AUTOMATIC

The name of the main unit of the Ada program.

The name of the Ada program library.

Binding level - complete bind to produce an object module.
Name of generated object module.

Remove the code for uncalled subprograms from the load
module.

Prcform timeslicing, invoking the task scheduler every 1999
milliseconds.

Do not explicitly map tasks to operating system processes.

Number of Kbytes initially allocated to the main program
stack.

Defauit number of Kbytes initial allocated to task stacks (in
absence of explicit length clause).

Do not provide a full trace of the propagation of exceptions
unhandled in the main program.

Number of Kbytes initially allocated to the program heap.

Quantum size, expressed in Kbytes, by which the size of the
program heap is incremented upon exhaustion.

Binder listing file name.

Do not print additional mapping information in the binder
listing.

Do not print warning messages in the binder listing.
Do not save information for debugging.
Name of file in which debugging information would be stored

(if generated) would be derived automatically from
PROGRAM name.

Validation Summary Report

Alsys 1 imited

AVE_VSR_90502/76

Appendix B - Page 3 of 3 AlsyCOMP_006 Version 5.3

APPENDIX F OF THE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The implementation-dependent characteristics
of this Ada implementation, as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to compiler documentation and not to
this report. Implementation-specific portions of the package STANDARD, which are not a part of
Appendix F, are:

package STANDARD is

tvpe INTEGER is range -2147483648 .. 2147483647,

tvpe SHORT INTEGER is range -32768 .. 32767,

tvpe SHORT_SHORT _INTEGER is range -128 .. 127;

type FLOAT is digits 15 range -7.24E+75 .. 7.24E+75;

typc SHORT_FLOAT is digits 6 range -7.24E+75 .. 7.24E+75;
type LONG_FLOAT is digits 18 range -7.24E+75 .. 7.24E+75;
type DURATION is delta 2.0**-14 range -131072.0 .. 131071.0

end STANDARD;

Validation Summary Report AVFE_VSR_90502/76

Alsys |imited Appendix C - Page 1 AlsyCOMP_006 Version 53

Alsys IBM 370 Ada Compiler

APPENDIX F

for VM/CMS, MVS and MVS/XA

Implementation - Dependent Characteristics

Alsys S.A.
29 Avenue Lucien-René Duschesne
78170 La Celle St. Cloud, France

Alsys Inc.
67 South Bedford Street
Burlington, MA 01803-5152, US.A.

Alsys Lid
Partridge House, Newtown Road
Henlev-on-Thames
Ovon. RGO TEN, UK

Version 5

Alsys GmbH
Am Ruppurrer Schlofi 7
D-7500 Karlsruhe 51,Germany

Alsys AB
Patron Pehr Vig 10
Box 1085
14] 22 Huddinge, Stockholm, Sweden

Alsys KKE Co.. Ltd
TechnoWave 100, [6F
1-1-25 Shin-Urashima-cho
Kanagawa-ku
Yokohama #221, Japan

Copyright 1990 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: October 1990

Alsys reserves the right to make changes in specifications and other information
contained in this publication without nrior notice, and the reader should in all cases
consult Alsys to determine whether such changes have been madc.

PREFACE

This Alsys IBM 370 Ada Compiler Appendix F for VM/CMS, MVS and MVS/XA is for
programmers, software engineers, project managers, ecducators and students who want to
develop an Ada program for any IBM System/370 processor that runs VM/CMS, MVS or
MVS/XA

This appendix is a required part of the Reference Manual for the Ada Programming
Language, ANSIYMIL-STD 1815A, January 1983 (throughout this appendix, citations in
square brackets refer to this manual). It assumes that the user is already familiar with
the VM/CMS, MVS and MVS/XA operating system, and has access to the fotlowing IBM
documents:

CMS User Guide, SC19-6210

CMS Command and Macro Reference, SC19-6209

OS/VS2 MVS Overview, GC28-0984

OS/VS2 System Programming Library: Job Management, GC28-1303

MVS/370 JCL Reference, GC28-1350

IBM System/370 Principles of Operation, GA22-7000

IBM System/370 System Summary, GA22-7001

Preface

Alsys IBM 370 Ada Compiler. Appendix F for VAM{ICMS, MVS and MVSIXA, v§

TABLE OF CONTENTS

INTRODUCTION

1 Implementation-Dependent Pragmas
1.1 INLINE

1.2 INTERFACE

1.3 INTERFACE_NAME

1.4 EXPORT

1.5 EXTERNAL_NAME

1.6 INDENT

1.7 RMODE

1.8 MAP_TASK

1.9 Other Pragmas

2 Implementation-Dependent Attributes
21 TDESCRIPTOR_SIZE

22 TIS_ARRAY

23 SYSTEM.ADDRESS'IMPORT

24 Limitations on the use of the atribute ADDRESS
3 Specification of the Package SYSTEM
4 Restrictions on Representation Clauses
4.1 Enumeration Types

42 Integer Types

43 Floating Point Types

4.4 Fixed Point Types

4.5 Access Types

4.6 Task Types

4.7 Array Types

4.8

Record Types

Tuble of Contents

W

SO 00N AW

Pt

Pt
st

11
11
12
14

15

19

20
23
26
28
32
33
34
38

i

n

Conventions for Implementation-Generated Names 49

6 Address Clauses 51
6.1 Address Clauses for Objects 51
6.2 Address Clauses for Program Units 51
6.3 Address Clauses for Entries 51
7 Restrictions on Unchecked Conversions 53
8 Input-Output Packages 55
8.1 NAME Parameter 55
8.1.1 VM/CMS 55
8.1.2 MVS 56
82 FORM Parameter 59
8.2.1 MVS specific FORM attributes 64
83 STANDARD _INPUT and STANDARD_OUTPUT 66
8.4 USE_ERROR 66
8.5 TEXT TERMINATORS 67
8.6 EBCDIC and ASCI} 68
8.7 Characteristics of Disk Files 69
8.7.1 TEXT IO 69
872 SEQUENTIAL 1O 69
$.7.3 DIRECT_IO 69
9 Characteristics of Numeric Types 71
9.1 Integer Types 71
9.2 Floating Point Type Attributes 72
9.3 Attributes of Type DURATION 74
w Alsvs IBM 370 Ada Compiler, Appendix F for VMICMS, MVS and MVS/XA, v5

10 Other Implementation-Dependent Characteristics

10.1 Characteristics of the Heap
10.2 Characteristics of Tasks

103 Decfinition of a Main Program
10.4 Ordering of Compilation Units
INDEX

Tahte of Conrenrs

75
76
77
77

79

Al IBM 370 A Compiler. Appendie F for VMICMS. MVS and M17SiX A, vS

INTRODUCTION

Implementation-Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
IBM 370 Ada Compiler for VM/CMS, MVS and MVS/XA. This document should be
considered as the Appendix F to the Reference Manual for the Ada Programming
Language ANSI/MIL-STD 1815A, January 1983, as appropriate to the Alsys Ada
implementation for the IBM 370 under VM/CMS, MVS and MVS/XA.

Sections 1 to 8 of this appendix correspond to the various items of information required
in Appendix F [F]*; sections 9 and 10 provide other information relevant to the Alsys
implementation. The contents of these sections is described below:

1.

The form, allowed places, and effect of every implementation-dependent pragma.
The name and type of every implementation-dependent attribute.

The specification of the package SYSTEM [13.7].

The list of all restrictions on representation clauses [13.1].

The conventions used for any implementation-generated names denoting
implementation-dependent components [13.4].

The interpretation of expressions that appear in address clauses, including those
for interrupts [13.5].

Any restrictions on unchecked conversions [13.10.2].

Any implementation-dependent characteristics of the input-output packages [14].

Characteristics of numeric types.

Throughout this manual. citations 1n square brackets refer 1o the Reference Manual
for the sde Programmune Langmaze, ANSIMIL-STD-1815A, January 1983,

Imiplemenianaon.Dependent Characteristics !

10, Other implementation-dependent characteristics,
Throughout this appendix, the name Ada Run-Time Execurive refers to the run-time

library routines provided for all Ada programs. These routines implement the Ada heap,
excepuions, tasking control, I/O, and other utility functions.

R Al IBM 370 Ada Compiler, Appenduc F for VMICMS, MVS and MVS/XA, v5

CHAPTER 1

Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE 1s fully supported, except for the fact that it is not possible 1o inline a
function call in a declarative part. Control of inlining is also possible using the
COMPILE command with the option IMPROVE (see the User's Guide, Chapter 4).

1.2 INTERFACE

Ada programs can interface to subprograms written in another language through the use

of the predefined pragma INTERFACE [13.9] and the implementation-defined pragma
INTERFACE_NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which calling and parameter passing conventions will be
generated. Pragma INTERFACE takes the form specified in the Reference Manual:

pragma INTERFACE (language_name, subprogram_name);,
where:

s language_name is the name of the other language whose calling and parameter
passing conventions are to be used.

e subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is ASSEMBLER.

The language name used in the pragma INTERFACE does not necessarily correspond to
the language used to write the interfaced subprogram. It is used only to tell the
Compiler how 10 generate subprogram calls, thatis, which calling conventions and
p;xramclcr passing (cchmqucx (O use.

Implementaton-Dependent Pragmas R

The language name ASSEMBLER is used to refer to the standard 1BM 370 calling and
parameter passing conventions. The programmer can use the language name
ASSEMBLER to interface Ada subprograms with subroutines written in any language
that follows the standard iBM 370 calling conventions.

1.3 INTERFACE_NAME

Pragma INTERFACE_NAME associates the name of an interfaced subprogram, as
declared in Ada, with its name in the language of origin. If pragma INTERFACE_NAME
is not used, then the two names are assumed to be identical.

This pragma takes the form:
pragma INTERFACE_NAME (subprogram_name, siring_literal),
where:

w subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

» smng_lizeral is the name by which the interfaced subprogram is referred to at link-
time.

The use of INTERFACE_NAME is optional, and is not needed if a subprogram has the
same name in Ada as in the language of origin. It is necessary, for example, if the name
of the subprogram in its original language contains characters that are not permitted in
Ada identificrs. Ada identifiers can contain only letters, digits and underscores, whereas
the IBM 370 linkage editor/loader allows external names to contain other characters, e.g.

the plus or minus sign. These characters can be specified in the sering_lizeral argument of
the pragma INTERFACE_NAME.

The pragma INTERFACE_NAME is allowed at the same places of an Ada program as the
pragma INTERFACE [13.9]. However, the pragma INTERFACE_NAME must always
occur after the pragma INTERFACE declaration for the interfaced subprogram.

In order to conform to the naming conventions of the IBM 370 linkage editor/loader, the

link-time name of an interfaced subprogram will be truncated to 8 characters and
converted to upper case.

4 Alsvs IBM 370 Ada Compiler. Appendix F for VMICMS, MVS and MVS/XA. v5

Example

package SAMPLE_DATA is
function SAMPLE_DEVICE (X : INTEGER) return INTEGER;

function PROCESS_SAMPLE (X : INTEGER) return INTEGER;
private

pragma INTERFACE (C, SAMPLE_DEVICE);
pragma INTERFACE (C, PROCESS_SAMPLE);

pragma INTERFACE_NAME (PROCESS_SAMPLE, "PSAMPLE");
end SAMPLE_DATA;

1.4 EXPORT

The pragma export takes a language name and an Ada identifier as arguments. This
pragma allows an object defined in Ada to be visible to external programs writien in the
spectfied language.

pragma EXPORT(language_name, Ada_identifier)
Example:
package MY PACKAGE is

THIS_OBJECT:INTEGER,;
pragma EXPORT (ASSEMBLER, THIS_OBJECT);

end MY_PACKAGE;

The language names supported are the same as those supported by pragma INTERFACE.

Limitations on the use of pragma EXPORT

| = This pragma must occur in a declarative part and applies only to objects declared in
\ this same declarative part, that is, generic instantiated objects or renamed objects
| are excluded.

« The pragma is only to be used for objects with direct allocation mode, which are
declared in a library package. The ALSYS implementation gives indirect allocation
modc¢ to dynamic objects and objects that have significant size (see Application
Developer's Gude, Chapter 2.

Implementanion-Dependent Pragmas S

1.5 EXTERNAL_NAME

To name an exported Ada object as it is identified in the other language may require the
usc of non-Ada naming conventions, such as special characters, or case sensitivity. For
this purpose the implementation-dependent pragma EXTERNAL_NAME may be used in
conjunction with the pragma EXPORT:

pragma EXTERNAL_NAME (Ada_identifier, name_string),

The name_string is a string which denotes the name of the identifier defined in the other
language. The Ada_ideniifier denotes the exported Ada object.

The pragma EXTERNAL_NAME may be used anywhere in an Ada program where
pragma EXPORT is allowed. It must occur after the corresponding pragma EXPORT
and within the same library package.

Example:
package MY_PACKAGE is

THIS_OBJECT:INTEGER;
pragma EXPORT (ASSEMBLER, THIS_OBJECTY;
pragma EXTERNAL_NAME (THIS_OBJECT, "THISOBJ");

end MY PACKAGE;

0 Alsys IBM 370 Ada Compiler, Appendix F for VMICMS, MVS and MVS/XA. v5

1.6 INDENT

This pragma is only used with the Alsvs Reformatter (AdaReformar); this 1ool ofters the
functionalities of a source reformatter in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.
pragma INDENT(OFF)

The Reformatter does not modify the source lines after the OFF pragma INDENT.
pragma INDENT(ON)

The Reformatter resumes its action after the ON pragma INDENT. Therefore any source

lines that are bracketed by the OFF and ON pragma INDENTSs are not modified by the
Alsvs Reformatter.

~1

[mplententanon- Dependent Pragmas

1.7 RMODE

Pragma RMODE associates a residence mode with the objects designated by the access
values belonging to a given access type.

This pragma takes the form:
pragma RMODE (access_npe_name, residence_mode);,
residence_mode ;2= A24 | ANY

where:

= access_type_name is the name of the access type defining the collection of objects
whose residence mode is to be specified.

a residence_mode is the residence mode 1o be associated with the designated objects

A24: Indicates that the designated objects must reside within 24 bit
addressable virtual storage (that is, below the 16 megabyte virtual
storage line under MVS/XA).

ANY: Indicates that the designated objects may reside anywhere in virtual
storage (that is, either above or below the 16 megabyte virtual
storage line under MVS/XA).

On non-extended architecture machines the pragma is effectively ignored, since only 16
megabytes of virtual address space are available and all virtual addresses implicitly meet
the A24 rusidence mode criteria.

Under MVS/XA the pragma is significant for data whose residence mode must be

explicitly controlled, e.g. data which is to be passed to non-Ada code via the pragma
INTERFACE.

In the absence of the pragma RMODE, the default residence mode associated with the
objects designated by an access type is ANY.

The access_rype_name must be a simple name. The pragma RMODE and the access type
declarauon to which it refers must both occur immediately within the same declarative
part, package specification or task specification; the declaration must occur before the
pragma.

i Alsys IBM 370 Ada Compiler, Appendix F for VMICMS, MVS and MVS(XA, v5

1.8 MAP_TASK

Pragma MAP_TASK controls the mapping of Ada tasks to operating sys. --» prncesses.
The pragma refers 1o a set of tasks of the same task type, all instances of wh % . ill be
mapped in the same manncr.

In the casc of a task specification including the reserved word type, the declaration
defines a task type. The set of tasks represented by such a 1ask type name comprises all
task objects of the specified type.

In the case of a task specification without the reserved word type, the declaration is
considered to introduce an anonymous task type with a single instance [9.1]. The set of
tasks represented by such an anonymous task type name contains exactly this one task.

This pragma takes the form:
pragma MAP_TASK (task_npe_name);
where!
a task_npe_name is the name of the task or task type.
Under CMS the pragma is effectively ignored since no operating system processes exist.

Under MV 3 and MVS/XA the pragma controls the mapping of Ada tasks to MVS
system processes. All instances of an Ada task type to which a pragma MAP_TASK
applies are mapped to their own operating system processes. Such Ada tasks never share
an operating system process.

In the absence of the pragma MAP_TASK, an Ada task is mapped to a default operating
system process and internally scheduled, together with all other Ada tasks mapped to this
process, by the Ada Run-Time Executive.

Pragma MAP_TASK is allowed in the same places as a declarative item and must refer to

a task or task type declared by an earlier declarative item of the same declarative part or
package specification.

Implementanon-Dependent Pragmas 9

1.9 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses (Chapter).

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Chapter 3). The undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress checks in a given compilation
by the use of the Compiler option CHECKS.

The following language defined pragmas have no effect:

CONTROLLED
MEMORY _SIZFE
OPTIMIZE
STORAGE_UNIT
SYSTEM_NAME

Note that all access types are implemented by default as controlled collections as
described in [4.8] (see section 10.1).

For optimisations certain facilities are provided through the use of the COMPILE
command with the option IMPROVE (see User's Guide, Chapter 4).

10 Alsvs 1BM 370 Ada Compuer. Appendix F for VMICMS, MVS and MVSIXA, v5

CHAPTER 2

Implementation-Dependent Attributes

This chapter describes the implementation-dependent attributes and limitations on the
use of the attribute ADDRESS.

The following implementation-dependent attributes are provided for use in record
representation clauses only (see Section 4.8):

COFFSET

R’'RECORD _SIZE

R'VARIANT_INDEX

C'ARRAY_DESCRIPTOR
C'RECORD_DESCRIPTOR

where C is the name of a record component and R is the name of a record type.

The following are also implementation-dependent attributes and are described in the
remainder of this chapter:

TDESCRIPTOR_SIZE
TIS_ARRAY
SYSTEM.ADDRESSIMPORT

where T is the name of any type or subtype.

2.1 T'DESCRIPTOR_SIZE

For a prefix T that denotes a type or subtype, this attribute yields the size (in bits)
required to hold a descriptor for an object of the type T, allocated on the heap or written
to a file. If T is constrained, TDESCRIPTOR_SIZE will yield the value 0.

2.2 T'IS_ARRAY

For a prefix T that denotes a type or subtype, this auribute yiclds the value TRUE i T
denotes an array type oran array subtype; otherwise, ityields the value FALSE

Implementation-Dependent Attribuies 11

2.3 SYSTEM.ADDRESS’'IMPORT

This auribute is a tunction which takes two strings as arguments; the first one denotes a
language name and the second one denotes an external symbol name. It yields the
address of this external symbol. The prefix of this attribute must be SYSTEM.ADDRESS.
The value of this attribute is of the type SYSTEM.ADDRESS. The syntax is;

SYSTEM.ADDRESS IMPORT ("Language_name", "external_symbol_name")
Following are two examples which illustrate the use of this attribute.
Example I:

SYSTEM ADDRESS'ITMPORT is used in an address clause in order to access an assembler
DSECT:

For the language ASSEMBLER:

ENTRY ERRNO
MYDATA DSECT

ERRNO DSF
END
For the language Ada:
package MY_PACK is
ERROR_NO:LONG_INTEGER;
for ERROR_NO use at SYSTEM.ADDRESS'IMPORT ("TASSEMBLER",
"ERRNO");
end MY_PACK;

Note that impicit initializations are performed on the declaration of objects; objects of
type access are implicitly initialized to null.

12 Alsys IBM 370 Ada Compiler, Appendix F for VMICMS, MVS and MVS/XA. v$

Example 2:
The second example shows another use of IMPORT which avoids implicit iritializations.

SYSTEM.ADDRESS'IMPORT is used in a renaming declaration 1o give a new name to an
external object:

For the language ASSEMBLER:

ENTRY REC
REC DSECT
[1 DSF
2 DSF

END

For the language Ada:
type RECORD_A s

record
[1.INTEGER;
[2:INTEGER;
end record;

type ACCESS_RECORD is access RECORD_A;
function COVERT_TO_ACCESS_RECORD is new UNCHECKED_ CONVERSION

(SYSTEM.ADDRESS, ACCESS RECORD);
X:RECORD_A renames CONVERT_TO_ACCESS_RECORD
(SYSTEM.ADDRESS IMPORT ("ASSEMBLER, "REC")).all;

In this example, no implicit initialization is done on the renamed object X.

Note that the object is actually defined in the external world and is only referenced in the
Ada world.

Implementanion-Dependent Atiributes 13

2.4 Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entitics do not have meaningful addresses. The attribute ADDRESS will
deliver the value SYSTEM.NULL_ADDRESS if applied 10 such prefixes and a compilation
warning will be issued.

» A constant or named number that is implemented as an immediate value (i.¢. does
not have any space allocated for it).

= A package specification that is not a library unit.
s A package body that is not a library unit or subunit.

= A package body that is not a library unit or subunit

14 Alsys IBM 370 Ada Compuer. Appendu F for VMICMS, MVS and MVS/XA, v5$

CHAPTER 3

Specification of the Package SYSTEM

package SYSTEM is

type NAME is (18086,
180386,
MC680X0,
370,
TRANSPUTER,
VAX);

SYSTEM_NAME : constant NAME := S$370;

STORAGE_UNIT : constant := 8;

MAX_INT : constant := 2**31 - 1;
MIN_INT : constant := - (2**31);
MAX_MANTISSA : constant := 3t;
FINE_DELTA : constant := 2#1.0#E-31;
MAX DIGITS : constant := 18;

MEMORY _SIZE : constant := 2%*32;
TICK : constant := 0.01;

subtype PRIORITY is INTEGER range 1 .. 10;

type ADDRESS is private;

NULL_ADDRESS : constant ADDRESS-

function VALUE (LEFT : in STRING) return ADDRESS;

subtype ADORESS STRING is STRING(1..8);

function IMAGE (LEFT : in ADDRESS) return ADDRESS_STRING;

type OFFSET is range -(2**31) .. 2**31-1;

-- This type is used to measure a number of storage units (bytes).
function SAME_SEGMENT (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

ADDRESS_ERROR : exception;

Specificanion of the Package SYSTEM 15

function “+" (LEFT : n ADDRESS; RIGHT : in OFFSET) return ADDRESS;
function "+' (LEFT : in OFFSET; RIGHT : in ADDRESS) return ADDRESS;
function *-" (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;

function *-" (LEFT : in ADDRESS; RIGKT : in ADDRESS) return OFFSET;
function "<=" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function “<" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function “>=' (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function “>" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

function “mod" (LEFT : in ADDRESS; RIGHT : in POSITIVE) return NATURA".;

type ROUND DIRECTION 1s (DOWN, UP);

function ROUND (VALUE : in ADDRESS;

DIRECTION : in ROUND_DIRECTION;

MODULUS : in POSITIVE) return ADDRESS;
generic

type TARGET is private;
function FETCH_FROM_ADDRESS (A : in ADDRESS) return TARGET;
generic
type TARGET is private;
procedure ASSIGN_TO_ADDRESS (A : in ADDRESS; T : in TARGET);
-- These routines are provided to perform READ/WRITE operations in memory.

type OBJECT_LENGTH is range 0 .. 2**31 -1;
- This type is used to designate the size of an object in storage units.

procedure MOVE (TO : in ADDRESS;
FROM : in ADDRESS;
LENGTH : in OBJECT_LENGTH);

end SYSTEM;

The function VALUE may be used to convert a string into an address. The string is a
sequence of up to eight hexadecimal characters (digits or letters in upper or lower case in
the range A_.F) representing a virtual address. The exception CONSTRAINT_ERROR s
raised if the string does not have the proper syntax.

The function IMAGE may he used to convert an address to a string which is a sequence of
exactly eight hexadecimal digits, using the characters 0.9 and A..F.

The function SAME_SEGMENT alwavs returns TRUE and the exception
ADDRESS_ERROR 1s never raised as the 370 1s a non segmented architecture.

16 Alsvs IBM 370 Ada Compiler, Appendux F for VMICMS, MVS and MVSIXA, v5

The functions "+ and "-" with an ADDRESS and an OFFSET parameter provide support
to perform address computations. The OFFSET parameter is added to, or subtracted
from the address. The exception CONSTRAINT_ERROR can be raised by these
functions.

The function "-" with the two ADDRESS parameters may be used to return the distance
between the specified addresses.

The functions "< =","<", ">="and ">" may be used to perform a comparison on the
specified addresses. The comparison is signed.

The function "mod” may be used to return the offset of LEFT address retative 1o the
memory block immediately below it starting at a multiple of RIGHT storage units.

The function ROUND may be used 1o return the specified address rounded 1o a specific
value in a particular direction.

The generic function FETCH_FROM_ADDRESS may be used to read data objects from
given addresses in store. The generic function ASSIGN_TO_ADDRESS may be used to
write data objects to given addresses in store. These routines may not be instantiated
with unconstrained types.

The procedure MOVFE may be used to copy LENGTH storage units starting at the address
FROM to the address TO. The source and destination locations may overlap.

Speciticanon of the Package SYSTEM 17

15

Alsvs IBM 270 Ada Compiler, Appendix F for VM/CMS, MVS and MVS/ XA, v§

CHAPTER 4

Restrictions on Representation Clauses

This section explains how objects are represented and allocated by the Alsys IBM 370
Ada Compiler and how it is possible to control this using representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,

fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

Except in the case of array and record types, the description of each class of type is
independent of the others. To understand the representation of an array type it is

necessary to understand first the representation of its components. The same rule
applies to a record type.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

= a (predefined) pragma PACK, when the object is an array, an array component, a
record or a record component

= arecord representation clause, when the object is a record or a record component
e asize specification, in any case.
For each class of types the effect of a size specification is described. Interaction between

size specifications, packing and record representation clauses is described under array
and record types.

Restrictions on Representation Clauses 19

4.1 Enumeration Types
Internal codes of enumeration literals

Whnen no enumeration representation clause applies 1o an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes
are the integers 0, 1, 2, ..., n-1.

An cnumeration representation clause can be provided to specify the value of each

internal code as described in [13.3]. The Alsys Compuler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -231 .. 231-1,

Encoding of enumeration values

An enumeration value is always represented by its internal code in the pregram
penerated by the Compiler.

Enumeration subtypes

Minimum size: The minimum size of an enumeration subtype is the minimum number
of bits that is nccessary for representing the i~ternal codes of the subtype values in
normal binary form.

For a static subtype, if it has a2 null range its minimum size is 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is determined as follows. Form >= 0, L is the
smallest positive integer such that M <= 2L-1. For m < 0, L is the smallest positive
integer such that -2L-1 <= mand M <= 2L-1-1,

For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW),
-- The minimum size of COLLOR is 3 bits.

subtype BLACK_AND_WHITE is COLOR range BLACK .. WHITEL;
-- The minimum size of BLACK_AND_WHITE is 2 bits.

20 Alsvs IBM 370 Ada Compiler. Appendix F for VMICMS, MVS and MVS/XA. v§

subtype BIACK_OR_WHITE is BLACK_AND_WHITE range X .. X;

-- Assuming that X is not static, the minimum size of BLACK_OR_WHITE is
-- 2 bits (the same as the minimum size of the static type mark

- BLACK_AND_WHITE).

Size: When no size specification is applied to an enumeration type or first named
subtype, the objects of that type or first named subtype are represented as signed integers
if the internal code associated with the first enumeration value is negative, and as
unsigned integers otherwise. The machine provides 8, 16 and 32 bit integers, and the
Compiler selects automatically the smallest machine integer which can hold each of the
internal codes of the enumeration type (or subtype). The size of the cnumeration type
and of any of its subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value gicater than or
equal to the minimum size of the type or subtype to which it applies.

For example:
type EXTENDED is
(-- The usual American ASCII characters.
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, pC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, us,
T " s #, ‘s, %, &', ™,
. Y, s . . N " .
0, ', 2, 3, 4, 'S, (N 7,
'8 9, o <, =, >, 7,
‘@, A 'B', 'C, D, 'E’, 'F, 'G’,
H, T, T, K, 1, M, N 0,
P Q' 'R, 'S, 1", U, 'V, "W
X, Y, VAR T, N, I, AR B
a’, b, ¢, g, e, P, g,
h, v, T, 'k, I, ‘m’, n’, o,
v q, T s, T, u, W, W,
N v P K R '}, '~ DEL

Restrictions on Representation Clauses 21

UPPER_ARROW,
LOWER_ARROW,
UPPER_LEFT_CORNER,
UPPER_RIGHT_CORNER,
LOWER_RIGHT_CORNER,
LOWER_LEFT_CORNER,
)

for EXTENDED'SIZE use §,
-- The size of type EXTENDED will be onc byte. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys Compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Object size: Provided its size is not constrained by a record component clause or a
pragina PACKk, in object of an enumeration subtype has the same size as its subtype.

Alignment: An enumeration subtype is byte aligned if the size of the subtype is less than
or equal to 8 bits, halfword aligned if the size of the subtype is less than or equal to 16
bits and word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation

clause or a pragma PACK, the address of an object of an enumeration subtype is a
multiple of the alignment of the corresponding subtype.
Vi

22 Alsys IBM 370 Ada Compiler. Appendix F for VMICMS, MVS and MVS/IX A, vS

4.2 Integer Types
Predefined integer types

There are three predefined integer types in the Alsys implementation for IBM 370
machines:

type SHORT_SHORT_INTEGERis range -2**07 .. 2**07-1;
type SHORT_INTEGER is range -2**15 .. 2**15-1;
type INTEGER is range -2**31 .. 2**31-1,

Selection of the parent of an integer type
An integer type declared by a declaration of the form:
type Tis range L .. R;

is implicitly derived from either the SHORT_INTEGER or INTEGER predefined integer
type. The Compiler automatically selects the predefined integer type whose range is the
shortest that contains the values L to R inclusive. Note that the
SHORT_SHORT_INTEGER representation is never automatically selected by the

Compiler.
Encoding of integer values

Binary code is used to represent integer values, using a conventional two’s complement
representation.

Integer subtypes
Minimum size: The minimum size of an integer subtype is the minimum number of bits
that is necessary for representing the internal codes of the subtype values in normal

binary form (that is to say, in an unbiased form which includes a sign bit only if the range
of the subtype includes negative values).

Restrictions on Representation Clanses 23

For a static subtype, if it has a nulif range its minimum size is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is determined as
follows. For m >= 0, L is the smallest positive integer such that M <= 2L-1. For m <
0, L is the smallest positive integer such that -2L-1 <= mand M <= 2L-1-1,

For example:

subtype S is INTEGER range 0 .. 7,
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y,
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of the static type mark S).

Size: The sizes of the predefined integer types SHORT_SHORT_INTEGER,
SHORT_INTEGER and INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly.

For example:

type S is range 80 .. 100;
-- S is derived from SHORT_INTEGER, its size is 16 bits.

type J is range 0 .. 65535,
-- Jis derived from INTEGER, its size is 32 bits.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, its size is 32 bits.

When a size specification is applied 10 an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies.

For example:

type S is range 80 .. 1(XX

for S'SIZF use 32;

-- Sis derived from SHORT_INTEGER, but its size 1s 32 bits
-- because of the size specification.

24 Alsvs IBM 370 Ada Compiler. Appendie F for VMICMS, MVS and MVS/XA, vS

type J is range 0 .. 255,

for J'SIZL use 8;

-- Jis derived from SHORT_INTEGER, but its size is 8 bits because
-- of the size specification.

type N is new J range 80 .. 100;
-- N 1s indirectly derived from SHORT_INTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

The Alsys Compiler fully implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, an object of an integer subtype has the same size as its subtype.

Alignment: An integer subtype is byte aligned if the size of the subtype is less than or
equal to 8 bits, halfword aligned if the size of the subtype is less than or equal to 16 bits
and word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation

clause or a pragma PACK, the address of an object of an integer subtype is a multiple of
the alignment of the corresponding subtype.

Restrictions on Representation Clauses 25

4.3 Floating Point Types
Predefined floating point types

There are three predefined floating point types in the Alsys implementation for IBM 370
machines:

type SHORT_FLOAT is
digits 6 range -2.0**252%(1.0-2.0**-24) .. 2.0**252*(1.0-2.0**-24);

type FLOAT is
digits 15 range -2.07*252*(1.0-2.0**-56) .. 2.0**252*(1.0-2.0**-56);

type LONG_FLOAT is
digits 18 range -2.0**252*(1.0-2.0**-112) .. .0**252*(1.0-2.0**-112);

Selection of the parent of a floating point type
A floating point type declared by a declaration of the form:
type T is digits D jrange L .. R};

is implicitly derived from a predefined floating point type. The Compiler automaticaily
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L and R.

Encoding of floating point values

In the program generated by the Compiler, floating point values are represented using
the IBM 370 data formats for single precision, double precision and extended precision
floating point values as appropriate.

Values of the predefined type SHORT_FLOAT are represented using the single precision
format, values of the predefined type FLOAT are represented using the double precision
format and values of the predefined type LONG_FLOAT are represented using the
extended precision format. The values of any other floating point type are represented in
the same way as the values of the predefined type from which it derives, directly or
indirectly.

26 Alsvs IBM 370 Ada Compiler. Appendix F for VM/CMS, MVS and MVSIXA, v5

Floating point subtypes

Minimum size: The minimum size of a floating point subtype is 32 bits if its base type is
SHORT_FLOAT or a type derived from SHORT_FLOAT, 64 bits if its base type is FLOAT
or a type derived from FLOAT and 128 bits if its base type is LONG_FLOAT or a type
derived from LONG_FLOAT.

Size: The sizes of the predefined floating point types SHORT_FLOAT, FLOAT and
LONG_FLOAT are respectively 32, 64 and 128 bits.

The size of a fioating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32, 64 or 128 bits).

Object size: An object of a floating point subtype has the same size as its subtype.

Alignment: A floating point subtype is word aligned if its size is 32 bits and double word
aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation

clause or a pragma PACK, the address of an object of a floating point subtype is a
multiple of the alignment of the corresponding subtype.

Restrictions on Representation Clauses 27

4.4 Fixed Point Types
Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of smali is
determined by the value of delta as defined by [3.5.9].

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys Compiler for IBM 370 machines uses a set of
anonymous predefined types of the form:

type FIXED is delta D range (-2**15)*S .. (2**15-1)*S;
for FIXED'SMALL use S;

type LONG_FIXED is delta D range (-2**31)*S .. (2**31-1)*S;
for LONG_FIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type

A fixed point type declared by a declaration of the form:
type T is delta D range L .. R;

possibly with a small specification:
for TSMALL use S;

1s implicitly derived from a predefined fixed point type. The Compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that incl.des the values L and R.

28 Alsvs IBM 370 Ada Compiler, Appendix F for VAICMS, MUS and MVS/X A, vS

Encoding of fixed point values

In the program generated by the Compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V /FBASE'SMALL

Fixed point subtypes

Minimum size: The minimum size of a fixed po.nt subtype is the minimum number of
binary digits that is necessary for representing the values of the range of the subtype
using the small of the base type (that is 10 say, in an unbiased form which includes a sign
bit only if the range of the subtype includes negative values).

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such thats < mand M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
integer such that I <= 2L-1. Fori <0, Lis the smallest positive integer such that -
2l-1 <=jand] <= 2L-1-1.

For example:

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 _30.0,
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size: The sizes of the sets of predefined fixed point types FIXED and LONG_FIXED are
16 and 32 bits respectively.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which it
derives directly or indirectly.

Restricaons on Representation Clauses 29

For example:

type F is delta 0.01 range 0.0 .. 2.0;
-- Fis derived from a 16 bit predefined fixed type, its size is 16 bits.

type L is delta 0.01 range 0.0 .. 300.0;
-- L 1s derived fron a 32 bit predefined fixed type, its size is 32 bits.

type N is new L range 0.0 .. 2.0;
-- N is indirectly derived from a 32 bit predefined fixed type, its size is 32 bits.

When a size specification is applied to a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal 10 the minimum size of the type or subtype to which it applies.

For example:

type F is delta 0.01 ranpe 0.0 .. 2.0,

for FSIZE use 32;

-- Fis derived from a 16 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

type L is delta 0.01 range 0.0 .. 300.0;
for F'SIZE use 16;

-- F is derived from a 32 bit predefined fixed type, but its size is 16 bits
-- because of the size specification.

-- The size specification is legal since the range contains no negative values
-- and therefore no sign bit 1s required.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 32 bits because N inherits the size specification of F.

The Alsys Compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine iniegers, the specified length cannot be greater
than 32 bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, an object of a fixed point tvpe has the same size as its subtype.

30 AN TBM 370 Ada Compiler, Appendo F for VMICMS, MVS and M5 XA vS

Alignment: A fixed point subtype is byte aligned if its size is less than or equal to 8 bits,

halfword aligned if the size of the subtype is less than or equal 1o 16 bits and word
aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation

clause or a pragma PACK, the address of an object of a fixed point subtype is 2 multiple
of the alignment of the corresponding subtype.

Restnicrions on Representanion Clauses 31

4.5 Access Types

Collection Size

When no specification of collection size applies 10 an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE_SIZE is then 0.

As described in [13.2], a specification of collection size can be provided in order to

reserve storage space for the collection of an access type. The Alsys Compiler fully
implements this kind of specification.

Encoding of access values
Access values are machine addresses represented as 32 bit values. The implementation

uses the top (most significant) bit of such a 32 bit value 10 pass additional information to
the Ada Run-Time Executive.

Access subtypes
Minimum size: The minimum size of an access subtype is 32 bits.
Size: The size of an access subtype is 32 bits, the same as its minimum size.

The only size that can be specified for an access type using a size specification is its usual
size (32 bits).

Object size: An object of an access subtype has the same size as its subtype, thus an
object of an access subtype is always 32 bits long.

Alignment: An access subtype is always word aligned.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of an access subtype is always on a
word boundary, since its subtype is word aligned.

32 Alsvs IBM 370 Ada Compiler, Appendux F for VMICMS, MVS and MVS/XA. v5

4.6 Task Types
Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in [13.2], a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case the value indicated at bind time
is ignored for this task type, and the length clause is obeyed.

Itis not allowed to apply such a length clause to a derived type. The same storage space is

reserved for the activation of a task of a derived type as for the activation of a task of the
parent type.

Encoding of task values

Task values are machine addresses.

Task subtypes
Minimum size: The minimum size of a task subtype is 32 bits.
Size: The size of a task subtype is 32 bits, the same as its minimum size.

The only size that can be specified for a task type using a size specification is its usual size
(32 bits).

Object size: An object of a task subtype has the same size as its subtype. Thus an object
of a task subtype is always 32 bits long.

Alignment: A task subtype is always word aligned.
Object address: Provided its alignment is not constrained by a record representation

clause, the address of an object of a task subtype is always on a word boundary, since its
subtype is word aligned.

Restrictions on Representation Clauses 33

4.7 Array Tyopes

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have

the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

Component Gap Component Gap Component Gap

Components

If the array is not packed, the size of the components is the size of the subtype of the
components.

For example:

type A is array (1 .. 8) of BOOLEAN;
-- The size of the components of A is the size of the tvype BOOLEAN: 8 bits.

type DECIMAL _DIGIT is range 0.. 9;
for DECIMAL_DIGIT'SIZE use 4;
type BINARY_CODED_DECIMAL is
array (INTEGER range <>) of DECIMAL_DIGIT;
-- The size of the type DECIMAL _DIGIT is 4 bits. Thus in an array of
-- type BINARY_CODED_DECIMAL each component will be represented in
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components.

For example:

type A is array (1 .. 8) of BOOLEAN;

pragma PACK(A),

-- The size of the components of A is thec minimum size of the type BOOLEAN:
- 1hit

4 Alsys IBM 370 Ada Compiler, Appendix F for VMICMS, MVS and MVS[XA, v5

type DECIMAL _DIGIT is range {) .. 9,
type BINARY_CODED_DECIMAL is
array (INTEGER range < >) of DECIMAIL_DIGIT;
pragma PACK(BINARY_CODED_DECIMAL);
-- The size of the type DECIMAL_DIGIT is 16 bits, but, as
-- BINARY_CODED_DECIMAL is packed, each componest of an array of this
-- type will be represented in 4 bits as in the usual BCD reprosentation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the Compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
1o optimize access to the arrav components and 10 their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype

For example:

type R is
record
K : INTEGER; -- INTEGER is word aligned.
B : BOOLEAN; -- BOOLEAN is byte aligned.
end record,;
-- Record type R is word aligned. Its size is 40 bits.

type A is array (1.. 10) of R;
-- A gap of three bytes is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 640 bits.

S sl U SN

Component Gap Component Gap Component Gap

Arrav of tvpe A: each subcomponent K has a word offser.

Restrictions on Representanon Clauses 35

If a size specification apphies to the subtype of the components or if the array is packed,
no gaps are inserted.

For example:

type R is
record
K INTEGER;
B : BOOLEAN;
end record,

type Ais array (1.. 10) of R;
pragma PACK(A),

-- There i1s no gap in an array of type A because A is packed.
-- The size of an object of type A will be 400 bits.

type NR is new R;
for NR'SIZE use 40;

type B is array (1 .. 10) of NR;

-- There is no gap in an array of type B because NR has a size specification.
-- The size of an object of type B will be 400 bits.

C e

Component Component Component

Array of type A or B: a subcomponent K can have any byte offset.

Array subtypes
Size: The size of an array subtype is obtained by multiplying the number of its

components by the sum of the size of the components and the size of the gaps (if any). If
the subtype is unconstrained, the maximum number of components is considered.

30 Alsys IBM 170 Ada Compider. Appendec F for VMICMS, MVS and MVS/XA, v

The size of an array subtype cannot be computed at compile time

s 110 hds non-static constraints or is an unconstrained array type with non-static

index subtypes (because the number of components can then only be determined at
run time).

» if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is 10 suppress

the gaps and to reduce the size of the components. The consequence of packing an array
type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) arc not static, the Compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys Compiler.

The only size that can be specified for an array type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful 10 verify
that the layout of an array is as expected by the application.

Object size: The size of an object of an array subtype is always equal 10 the size of the
subtype of the object.

Alignn. at: If no pragma PACK applies to an array subtype and no size specification

applies to its components, the array subtype has the same alignment as the subtype of its
components.

[fa pragma PACK applies 10 an array subtype or if a size specification applies 1o its
components (so that there are no gaps), the alignment of the array subtype is the lesser

of the alignment of the subtype of its components and the relative displacement of the
components.

Object address: Provided its alignment is not constrained by a record representation

clause, the address of an object of an array subtype is a multiple of the alignment of the
corresponding subtype.

Restrictions on Representation Clauses 37

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area ot storage units. The size of a record
component depends on its type. Gaps may cxist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in [13.4]. In the Alsys implementation
for IBM 370 machines there is no restriction on the posi ion that can be specified for a
component of a record. Bits within a storage unit are numbered from 0 to 7, with the
most-significant bit numbered 0. The range of bits specified in a component clause may
extend into following storage units. If a component is not a record or an array, its size
can be any size from the minimum size to the size of its subtype. If a component is a
record or an array, its size must be the size of its subtype:

type ACCESS_KEY is range (..15;
-- The size of ACCESS_KEY is 16 bits, the minimum size is 4 bits

type CONDITIONS is (ZERO, LESS_THAN, GREATER_THAN, OVERFLOW);
-- The size of CONDITIONS is 8 bits, the minimum size is 2 bits

type PROG_EXCEPTION is (FIX_OVFL, DEC_OVFL, EXP_UNDFL, SIGNIF);
type PROG_MASK is array (PROG_EXCEPTION) of BOOLEAN;

pragma PACK (PROG_MASK);

-- The size of PROG_MASK is 4 bits

type ADDRESS is range 0.2**24-1;
for ADDRESS'SIZE use 24,
-- ADDRESS represents a 24 bit memory address

type PSW is
record
PER_MASK : BOOLEAN;
DAT_MODE : BOOLEAN:
10_MASK : BOOLEAN;
EXTERNAL_MASK : BOOLEAN;
PSW_KEY - ACCESS_KEY;
EC_MODE - BOOLEAN,
MACHINE_CHECK : BOOLEAN
WAIT _STATE : BOOLEAN:
PROBLEM STAT:: : BOOLEAN:

Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS, MVS and MVS/XA, v5

ADDRESS SPACE : BOOLEAN;
CONDITION_CODE: CONDITIONS,
PROGRAM_MASK : PROG_MASK;
INSTR_ADDRIISS : ADDRESS;

end record;

-- This type can be used to map the program status word of the IBM 370

for PSW use
record at mod §;

PER_MASK at0
DAT_MODE at0
10_MASK at0
EXTERNAL_MASK at 0
PSW_KEY at 1
EC_MODE at 1
MACHINE_CHECK at 1
WAIT STATE at 1

PROBLEM_STATE at1l

ADDRESS SPACE at?2

CONDITION_CODEat 2

PROGRAM_MASK at?2

INSTR_ADDRESS at5
end record;

range 1..1;
range 5..5;
range 6..6,
range 7.7,
range 0..3;
range 4.4,
range 5..5;
range 6..6,
range 7.7,
range 0..0;
range 2..3;
range 4.7,
range (..23;

A record representation clause need not specify the position and the size for every

component.

If no component clause applies to a component of a record, its size is the size of its
subtype. [ts position is chosen by the Compiler so as to optimize access 10 the
components of the record: the offset of the component is chosen as a multiple of the
alignment of the component subtype. Moreover, the Compiler chooses the position of
the component so as to reduce the number of gaps and thus the size of the record

objects.

Because of these optimisations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the Compiler for

the components in a record object.

Pragma PACK has no further effect on records. The Alsys Compiler always optimizes the

tavout of records s described above.

Restrictions on Representaton Claises

In the current version, it 1s not possible 1o apply a record representation clause to a
derived typc. The same storage representation is used for an object of a derived type as
for an object of the parent type.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

T Beginning of the record
Compile time offset
DIRECT
Compile time offset
— OFFSET
Run time offset
INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components.

40 Alsves IBM 370 Ada Compiler. Appendic F for VMICMS, MVS and MVSIXA, v5

For example:
type DEVICE is (SCREEN, PRINTER);
type CO1 OR is (GREEN, RED, BLUE).
type SERIES is array (POSITIVE range < >) of INTEGER;

type GRAPH (L : NATURAL) is
record
X : SERIES(1 .. L); -- The size of X depends on L
Y : SERIES(1 .. L); -- The size of Y depends on L
end record;

Q : POSITIVE;

type PICTURE (N :NATURAL; D : DEVICE) is
record
F : GRAPH(N); -- The size of F depends on N
S : GRAPH(Q), -- The size of S depends on Q
case D is
when SCREEN =>
C: COLOR;
when PRINTER =>
null;
end case;
end record,

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the Compiler groups the dynamic components together and places
them at the end of the record (see diagram on the following page):

Restricuons on Representation Clauscs 4]

D = SCREEN D = PRINTER

N =2 N =1
Beginning of the record
t— S OFFSET S OFFSET
Compile time offsets
T F OFFSET F OFFSET
— S
N N
e— b
D o]
| ‘ : :
Run time offsets e - F -
b |- I
P]

The record type PICTURE: F and S are placed at the end of the record

As a result of this strategy, the only indirect components are dynamic components.
However, not all dynamic components are necessarily indirect. If there are dynamic
components in a component list which is not followed by a variant part, then exactly one
dynamic component of this list is a direct component because its offset can be computed
at compilation time.

42 Alsvs IBM 370 Ada Compier, Appenduc F for VMICMS. MVS and MVS/IXA, v5

For example:

— ——————— Beginning of the record
,——’L: Y OFFSET

— Compile time offset

L

U

Compile time offset

X Size dependent on discriminant L

Run time offset

Size dependent on discriminant L

The record type GRAPH: the dvnamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough o store
the size of any value of the record type (the maximum potential offset). The Compiler

evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implemenrtation generated name COFFSET.

Implicit components

In some circumstances, access 1o an object of a record type or 1o its components involves
computing information which only depends on the discriminant values. To avoid
unnecessary recomputation, the Compiler stores this information in the record objects,
updates it when the values of the discriminants are modified and uses it when the objects

or their components are accessed. This information is stored in special components
called implicit components.

Restricuions on Representaton Clauses 43

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORD_SIZE and the other VARIANT_INDEX.

On the other hand an implicit component may be used to access a given record
component. In this case the implicit componen* exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the

record component). Components of this kind are called ARRAY_DESCRIPTORS or
RECORD_DESCRIPTORsS.

RECORD SIZE

This implicit component is created by the Compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space

necessary (o store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORD_SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD_SIZE must be large enough to store the maximum
size of any value of the record type. The Compiler evaluates an upper bound MS of this

size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'RECORD_SIZE.

VARIANT_INDEX
This implicit component is created by the Compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when

a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible vatues of the implicit component VARIANT_INDEX.

44 Alsvs IBM 370 Ada Compiler. Appendtx F for VMICMS, MVS and MVS/XA, v5

For example:
type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);
type DESCRIPTION (KIND : VEHICLE := CAR) is

record
SPEED : INTEGER;
case KIND is
when AIRCRAFT | CAR =>
WHEELS : INTEGER;
case KIND is
when AIRCRAFT => --1
WINGSPAN : INTEGER;
when others = > --2
null;
end case;
when BOAT => --3
STEAM : BOOLEAN;
when ROCKET => -4
STAGES : INTEGER;
end case;
end record;

The value of the variant index indicates the set of components that are presentin a
record value:

Variant Index Set
1 {XIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 {KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Restrictions on Representation Clauses 45

Component Interval
KIND --

SPEED -

WHEELS 1..2
WINGSPAN 1.1
STEAM 3..3
STAGES 4L .. 4

The implicit component VARIANT_INDEX must be large enough to store the number V
of component lists that don’t contain variant parts. The Compiler treats this implicit
component as having an anonymous integer type whose rangeis 1.. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANT_INDEX.

ARRAY _DESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record

component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY_DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, he can obtain the size of
the component using the ASSEMBLY parameter in the COMPILE command.

The Compiler treats an implicit component of the kind ARRAY_DESCRIPTOR as having
an anonymous record type. If C is the name of the record component whose subtype is
described by the array descriptor, then this implicit component can be denoted in a
compoenent clause by the implementation generated name CARRAY_DESCRIPTOR.

RECORD_DESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD_DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, he can obtain the size of
the component using the ASSEMBLY parameter in the COMPILE command.

46 Alsvs IBM 370 Ada Compiler, Appendix F for VMICMS, MVS and MVS/XA. v5

The Compiler treats an implicit component of the kind RECORD_DESCRIPTOR as
having an anonymous record type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be

denoted in a component clause by the implementation generated name
CRECORD_DESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit
components RECORD_SIZE and/or VARIANT _INDEX from a record type. This can be

done using an implementation defined pragma called IMPROVE. The syntax of this
pragma is as follows:

pragma IMPROVE (TIME | SPACE, [ON =>]simple_name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the Compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the Compiler only inserts a VARIANT_INDEX or a
RECORD_SIZE component if this component appears in a record representation clause
that applies to the record type. A record representation clause can thus be usec to keep
one implicit component while suppressing the other.

A pragma IMPROVE that appiies (0 a given record type can occur anywhere that a
representation clause is allowed for this type.

Record subtypes

Size: Unless a component clause specifies that a component of a record type has an
offset or a size which cannot be expressed using storage units, the size of a record subtype

is rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its
components and the sizes of its gaps (if any). This size is not computed at compile time

= when the record subtype has non-static constraints,

« when a component is an array or a record and its size is not computed at compilc
time.

Restrictions on Representation Clauses 47

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time, an upper bound of
this size is used by the Compiler to compute the subtype size.

The only size that can be specified for a record type or first named subtype using a size
specification is its usual size. Nevertheless, such a lergth clause can be useful to verify
that the layout of a record is as expected by the application.

Object size: An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8 Kbyte. If the size of the subtype is greater than this, the object

has the size necessary 10 store its current value; storage space is allocated and released as
the discriminants of the record change.

Alignment: When no record representation clause applies 10 its base type, a record

subtype has the same alignment as the component with the highest alignment
requirement.

When a record representation clause that does not contain an alignment clause applies
1o its base type, a record subtype has the same alignment as the component with the
highest alignment requirement which has not been overridden by its component clause.

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause.

Object address: Provided its alignment is not cons.rained by a representation clause, the

address of an object of a record subtype is a multiple of the alignment of the
corresponding subtype.

48 Alsys 1BM 370 Ada Compiler, Appendix F for VMICMS, MVS and MVS/XA, v5

CHAPTER §

Conventions for Implementation-Generated Names

Special record components are introduced by the Compiler for certain record type
definitions. Such record components are implementation-dependent; they are used by
the Compiler 1o improve the quality of the generated code for certain operations on the
record types. The existence of these components is established by the Compiler
depending on implementation-dependent criteria. Attributes are defined {or referring to
them in record representation clauses. An error message is issued by the Compiler if the
user refers to an implementation-dependent component that does not exist. If the
implementation-dependent component exists, the Compiler checks that the storage
location specified in the component clause is compatible with the treatment of this
component and the storage locations of other components. An error message is issued if

this check fails.

There are four such attributes:

TRECORD_SIZE

T'VARIANT_INDEX

C'ARRAY_DESCRIPTOR

For a prefix T that denotes a record type. This attribute
refers o the record component introduced by the Compiler
in a record to store the size of the record object. This
component exists for objects of a record type with
defaulted .i.criminants when the sizes of the record objects
depend on the values of the discriminants.

For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to assist in the efficient implementation of
discriminant checks. This component exists for objects of a
record type with variant type.

For a prefix C that denotes a record component of an array
type whose component subtype definition depends on
discriminants. This attribute refers to the recora
component introduced by the Compiler in a record 10 store

information on subtypes of components that depend on
discriminants,

Convennons for Implementation-Generared Namies 49

CRECORD_DESCRIPTOR For a prefix C that denotes a record component of a record
type whosc component subtype definition depends on
discriminants. This auribute refers to the record
component introduced by the Compiler in a record 1o store
information on subtypes of components that depend on
discriminants.

S0 Alsys 1BM 370 Ada Compiler, Appendix F for VMiCMS, MVS uand MVSIXA w5

CHAPTER 6

Address Clauses

6.1 Address Clauses for Objects
An address clause can be used to specify an address for an object as described in [13.5].

When such a clause applies to an object no storage is allocated for it in the program

generated by the Compiler. The program accesses the object using the address specified
in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
maximum possible size is greater than 8 Kbytes.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented.

Address Clouses 5!

52 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS, MV'S and MVSIXA, v5$

CHAPTER 7

Restrictions on Unchecked Conversions

Unconstrained arrays are not allowed as target types.

Unconstrained record types without defaulted discriminants are not allowed as target
types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal. If a composite type is used either as the
source type or as the target type this restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

« if an unchecked conversior is achieved of a scalar or access source type to a

composite target type, the result of the function is a copy of the source operand; the
result has the size of the source.

« ifan unchecked conversion is achieved of a composite source type to a scalar or

access target type, the result of the function is a copy of the source operand; the
result has the size of the target.

Restrictions on Unchecked Conversions 53

54 Alsvs IBM 370 Ada Compuler, Appendux F for VMICMS, MVS and MVS/XA, v§

CHAPTER 8

Input-Output Packages

The predefined input-outpul packages SEQUENTIAL_IO [14.2.3], DIRECT_IO [14.2.5],
TEXT_10 {14.3.10] and 10_EXCEPTIONS [14.5] are implemented as described in the
Languwge Reference Manual.

The package LOW_LEVEL_IO [14.6], which is concerned with low-level machine-

dependent input-output, is not implemented.

8.1 NAME Parameter
8.1.1 VM/CMS

The NAME parameter supplied to the Ada procedures CREATE or OPEN (14.2.1] may
represent a CMS file name, a DDNAME specified using a FILEDEF command or an in-
store file name.

The syntax of the Ada NAME parameter for VM/CMS is as follows:
file_name .= cms_file_name |
Zeddname |
\store_file_name

CMS file name

The syntax of a CMS file name as specified in the Ada NAME parameter is as follows:
cms_file_name = fn{ft|{fm]]
where

fn is the CMS filename
ftis the CMS filetype
fr is the CMS filemode

Input-Outpur Packages 55

If either the filename or filetype exceeds 8 characters then it is truncated. As indicated
above, the filetype and filemode fields are not mandatory components of the NAME
parameter. If the filemode is omitted, it defaults to "A1l" for files being created,; for files
being opened, all accessed disks are searched and the CMS filemode is set 1o that of the
first file with the appropriate filename and filetype. If, in addition, the filetype is omitied
it defaults 1o "FILE". The case of the characters of a CMS [ile name is not significant.

DDNAME

The NAME parameter may also be a DDNAME. If the file name parameter starts with a
% character, the remainder of the string (excluding trailing blanks) is taken as a
DDNAME previously specified using the CMS FILEDEF command. If the DDNAME has
not been specified using FILEDEF, NAME_ERROR will be raised. The case of the
characters of a DDNAME is not significant.

The effect of calling CREATE and DELETE for a file opened using a DDNAME is as if
OPEN or CLOSE (respectively) had been called.

In-store file name

The NAME parameter may also be an in-store file name. An in-store file name siarts

with a \ characier but is otherwise unrestricted. The case of the characters of an in-store
file name is significant.

An in-store file name represents a virtual file, which is held in memory rather than on
disk. As a consequence, access to such a virtual file is more efficient than access to a disk
based file. However, a virtual file has no independent external existence and will exist

only until the termination of the Ada program which creates it, or until it is explicitly
deleted.

8.1.2 MVS

The NAME parameter supplied to the Ada procedures CREATE or OPEN [14.2.1] may
represent an MVS dataset name, 2 DDNAME or an in-store file name.

The syntax of the Ada NAME parameter for MVS is as follows:
dataset_nante = mws_dataset_name |

Sddname |
\srore_file_name

56 Alsys IBM 370 Ada Compuler, Appendux F for VMICMS, MV'S and MVS/XA, v5§

MYVS dataset name

The syntax of an MVS dataset name as specified in the Ada NAME parameter is as
follows:

mvs_dataset_name :.= {&]dsname|(member)] |
‘dsname|(niember)]’

where

dsname is the MVS dataset name. If prefixed by an ampersand (&) the system
assigns a temporary dataset name.

niember is the MVS member, generation or area name.

An unqualified name (not enclosed in apostrophes) is first prefixed by the string (if any)
given as the QUALIFIER parameter in the program PARM field when the program is

run. An intervening period is added if required. If no QUALIFIER parameter has been
specified no prefix is applied.

The QUALIFIER parameter may be specified as in the following example:

/STEP20 EXEC PGM=MONTHLY PARM="/QUALIFIER(PAYROLL ADAY
A fully qualified name (enclosed in apostrophes) is not so prefixed. The result of the
NAME function is always in the form of a fully qualified name, i.e. enclosed in single

quotes.

DDNAME

The NAME parameter may also be a DDNAME. If the dataset name parameter starts
with a % character, the remainder of the string (excluding trailing blanks) is taken as a

DDNAME previously allocated. If the DDNAME has not been allocated, NAME_ERROR
will be raised.

The effect of calling CREATE and DELETE for a file opened using a DDNAME is as if
OPEN or CLOSE (respectively) had been called.

In-store file name
The NAME parameter may also be an in-store file name. An in-store file name starts

with a \ character but is otherwise unrestricted. The case of the characters of an in-store
file name is significant.

Input-Output Packages 57

An in-store file name represents a virtual file, which is held in memory rather than on
disk. AS a consequence, access 1o such a virtual file 1s more efficient than access to a disk
based file. However, a virtual file has no independent external existence and will exist
only until the termination of the Ada program which creates it, or until it is explicitly
deleted.

58 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS, MVS and MVS/XA, v5

8.2 FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the lexical
rules of [2], separated by commas. The FORM parameler may be given as a null string
except when DIRECT_IO is instantiated with an unconstrained type; in this case the
record size attribute must be provided. Attributes are comma-separated; blanks may be
inserted between lexical eiements as desired. In the descriptions below the meanings of
natural, positive, etc., are as in Ada; attribute keywords (represented in upper case) are
identifiers {2.3] and as such may be specified without regard to case.

USE_ERROR is raised if the FORM parameter does not conforn 1o these rules.
The attributes are as follows:

File sharing attribute

This attribute allows control over the sharing of one external file between several
internal files within a single program. In effect it establishes rules for subsequent OPEN
and CREATE calls which specify the same external file. [f such rules are violated or ifa
different file sharing attribute is specified in a later OPEN or CREATE call, USE_ERROR
will be raised. The syntax is as follows:

NOT_SHARED |
SHARED = > access_mode

where
access_mode := READERS | SINGLE_WRITER | ANY
A file sharing attribute of:
NOT_SHARED
implies only one internal file may access the external file.
SHARED => READERS
imposes no restrictions on internal files of mode IN_FILE, but prevents any

internal files of mode OUT_FILE or INOUT_FILE being associated with the
external file.

Input-Owput Packages 59

SHARED => SINGLE_WRITER

is as SHARED = > READERS, but in addition allows a single internal file of
mode OUT_FILE or INOUT_FILE.

SHARED => ANY
places no restrictions on external file sharing.

If a file of the same name has previously been opened or created, the default is taken
from thet file's sharing attribute, otherwise the default depends on the mode of the file:

for mode IN_FILE the default is SHARED = > READERS, for modes INOUT_FILE and
OUT_FILE the default is NOT_SHARED.

Record format attribute

This attribute controls the record format (RECFM) of an external file created in Ada.

The attribute is only meaningful in the FORM parameter of a CREATE call; if used in the
FORM parameter of an OPEN call, it will be ignored.

By default, files are created according to the following rules:

« for TEXT_IO, and instantiations of SEQUENTIAL _1O of unconstrained types,
variable-length record files (RECFM = V) are created.

« for DIRECT_IO, and instantiations of SEQUENTIAL _IO of constrained types, fixed-
length record files (RECFM = F) are created.

The syntax of the record format attribute is as follows:
RECFM => V | F

Record size attribute

This attribute controls the logical record length (LRECL) of an external file created in
Ada. The attribute is meaningful only in the FORM parameter of a CREATE call, or in
the FORM parameter of an OPEN call for a RECFM V file (variable-length record). In all
other cases the attribute will be ignored.

In the case of RECFM F files (fixed-length record) the record size attribute specifies the

record length of each record; in the case of RECFM V files (variable-length record), the
record size attribute specifies the maximum record length which can be transferred.

60 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS, MV'S and MVS/XA, v5

In the case of DIRECT_IO.CREATE for unconstrained types the user is required to
specily the record size attribute (otherwise USE_ERROR will be raised by the CREATE
procedure).

In the case of DIRECT_IO and SEQUENTIAL_IO for constrained types the value given
must not be smaller than ELEMENT_TYPE'SIZE / SYSTEM.STORAGE_UNIT;
USE_ERROR wil’ be raised if this rule is violated.

In the case of DIRECT_IO and SEQUENTIAL_IO for unconstrained types the value given
must not be smaller than ELEMENT_TYPE'DESCRIPTOR _SIZE /
SYSTEM.STORAGE_UNIT plus the size of the largest record which is to be read or
written. If a larger record is processed, DATA_ERROR wil be raised by an attempted
READ operation and USE_ERROR will be raised by an attempted WRITE operation.

In the case of TEXT_IO using a RECFM F file (fixed-length record), output lines will be
padded to the requisite length with spaces. Trailing spaces can be ignored when reading
a RECFM F file with TEXT_IO under the control of the truncate attribute.

The syntax of the record size attribute is as follows:
LRECL | RECORD_SIZE => natural

where narural 1s a size in bytes.
For input-output of constrained types the default is:

LRECL = > element_length
where

element_{ength = ELEMENT_TYPE'SIZE / SYSTEM.STORAGE_UNIT
For input-output of unconstrained types other than via DIRECT_IO, in which case the

record size attribute must be provided by the user, variable size records are used (RECFM
V).

Inpue-Ourput Packages (7

Carriage control

This autribute applies to TEXT_1O only, and is intended for files destined to be sent 10 a
printer.

For a file of mode OUT_FILE, this attribute causes the output procedures of TEXT_IO to
place a carriage control character as the first character of every output record; '1° (skip to
channel 1) if the record follows a page terminator, or space (skip to next line) otherwise.

Subsequent characters are output as normal as the result of calls of the output
subprograms of TEXT_lO.

For a file of mode IN_FILE, this attribute causes the input procedures of TEXT_IO to
interpret the first character of each record as a carriage control character, as described in
the previous paragraph. Carriage control characters are not explicitly returned as a
result of an input subprogram, but will (for example) affect the result of END_OF_PAGE.

The user should naturally be careful to ensure the carriage control attribute of a file of
mode IN_FILE has the same value as that specified when creating the file.

The syntax of the carriage contro! attribute is as follows:

CARRIAGE_CONTROL [=> boolean |

For CMS files, the default is set according to the filetype of the file: if the filetype is
LISTING, the default is CARRIAGE_CONTROL = > TRUE otherwise the default is
CARRIAGE_CONTROL => FAISE. If the auribute alone is specified without a boolean
value it is set to TRUE.

Truncate

This attribute applies to TEXT_IO files, and causes the input procedures of TEXT_IO to
remove trailing blanks from records read.

The syntax of the truncate attribute is as follows:
TRUNCATE | = > boolean |

The default is TRUNCATE = > FALSE for RECFM V files (variable-length record) and
TRUNCATE => TRUE for RECFM F files (fixed-length record).

If the attribute alone is specified without a boolean value it is set to TRUE.

62 Alsys IBM 370 Ada Compiler. Appendux F for VMICMS, MVS and MVS/XA, v5

Append

This attribute causes writing to commence at the end ¢ an ex'sting file. When used in
the FORM parameter of a CREATE call, a file represented by the given name wi'* be
opened if one already exists, otherwise a new file will be created and writing will
~ommence at the begining of the file.

The syntax of the APPEND attribute is as follows:

APPEND | => boolean |

The acfault is APPEND = > FALSE. If the attribute alone 1s specified without a boolean
value it 's set to TRUE.

Eof string

This attribute applies vnly to files associated with the terminal opened using TEXT_IO,

and controls the logical end_oj_file string. If a line equal 10 the logical end_of file string
18 typed in, END_QOF_FiLE will become TRUE. If an attempt is made to read {rom a file
for which END_OF_FILE is TRUE, END_ERROR will be raised.

The syntax of the EOF_STRING attrioute is as follows:
EOF_STRING = > sequence_of _characters
The default is EOF_STRING => /*
The EQF_STRING may not coatain commas, Spaces or an equals sign (=).

If the END_OF_FILE function is calied, 2 "look-ahead read” will be required. This means
that (for example) a question-and-answer session at the terminal coded as follows:

while not END_OF_FILE loop
PUT_LINE ("Enter value:™),
GET LINE (..}

end loop;

will cause the prompt to appear only after the first value * . . been input. If the example

1s recoded without the explicit call to END_OF_FILE (but ;:crhaps within a handier for
END_ERROR} the behaviour will be appropriate.

Input-Output Pacxages 63

8.2.1 MVS specific FORM attributes

The following additional FORM parameter attributes apply only 1o programs run under
MVS. If used in programs run under VM/CMS they will be ignored. Under MVS, they
are used to control the initial allocation of a dataset and apply only to calls of the

CREATE procedure. 1f used in the form parameter of an OPEN call they have no effect.

Block size attribute

This attribute controls the block size of an external file. The block size must be at least
as large as the record size (if specified) or must obuy the same rules for speaifying the
record size.
The default is

BLOCK_SIZE = > record_size
for RECFM F files and

BLOCK SIZE => 4096
for RECFM V files.

Unit attribute

This attribute allows control over the unit on which a file is allocated. The syntax is as
follows:

UNIT => uniz_name
where unit_name specifies a group name, a device type or a specific unit address.
The default is the local installation specific default.

Volume attribute

This attribute allows control over the volume on which a file is allocated. The syniax is
as follows:

VOLUME = > volume_name
where volume_nanie specifies the volume serial number.

The default is the local installation specific default.

04 Alsys IBM 370 Ada Compiler. Appendic F for VMICMS, MV'S and MVS/IXA, v5

Primary attribute

This attribute allows control over the primary space allocation for a file. The svntax s as
foliows:

PRIMARY = > natural
where natural 1s the number of blocks allocated to the file.
The default 1s the local installation specific default.

Secondary attribute

This attribute allows control over the secondary space allocanion for a file. The syntax is
as follows:

SECONDARY = > narural

where narural is the number of additional blocks allocated to the file if more space is
needed.

The default is the local installation specific default.

Input-Owput Packages 65

8.3 STANDARD_INPUT and STANDARD_OUTPUT

The Ada internal files STANDARD_INPUT and STANDARD_OUTPUT are associated
with the external files %ADAIN and e ADAOUT, respectively. By default under CMS the
DDNAMEs ADAIN and ADAOUT are defined 1o be the terminal, but the user may
redefine their assignments using the FILEDEF command before running any program.
Under MVS and MVS/XA, the DDNAMES must be allocated before any program is run,
whether or not the corresponding Ada internal files are used.

8.4 USE_ERROR

The following conditions will cause USE_ERROR to be raised:

66

Specifying a FORM parameter whose syntax does not conform to the rules given
above.

Specifying the EOF_STRING FORM parameter attribute for files other than
TEXT _1O files.

Specifying the CARRIAGE_CONTROL FORM parameter attribute for files other
than TEXT_IO files.

Specifying the BLOCK_SIZE FORM parameter attribute to have a value less than
RECORD _SIZE.

Specifying the RECORD_SIZE FORM parameter at.ribute 10 have a value of zero, or
failing to specify RECORD_SIZE for instantiations of DIRECT _10 for unconstrained
types.

Specifying a RECORD_SIZE: FORM parameter attribute 10 have a valuc less than
that required to hold the element for instantiations of DIRECT_IO and
SEQUENTIAL_IO for constrained types.

Violating the file sharing rules stated above.

For CMS, attempting to write a zero length record to other than the terminal.

Errors detected whilst reading or writing (e.g. writing to a file on a read-only disk).

Alsys IBM 370 Ada Compmler, Appendix F for VMICMS, MVS and MVS/XA, v5

8.5 TEXT TERMINATORS

Line terminators [14.3] are not implemented using a character, but are implied by the
end of physical record.

Page terminators [14.3] are implemented using the EBCDIC character OC (hexadecimal)
when the CARRIAGE_CONTROL. FORM attribute is FALSE, and by using the first
character of each record when CARRIAGE _CONTROL is TRUE.

File terminators [14.3] are not implemented using a character, but are implied by the end
of physical file. Note that for terminal input a linc consisting of the LOF_STRING (see
8.2) is interpreted as a file terminator. Thus, entering such a line to satisfy a read from
the terminal will raise the END_ERROR exception.

The user should avoid the explicit output of the character ASCILFF [C], as this will not
cause a page break to be emitted. If the user explicitly outputs the character ASCILLF,
this is treated as a call of NEW_LINE [14.3.4].

The following characters have special meaning for VM/SP; this should be borne in mind
when reading from the display terminal:

Character Default VM/SP meaning May be changed using
logical tine end symbol CP TERMINAL LINEND
" logical escape characlter CP TERMINAL ESCAPE
@ logical character delete symbol CP TERMINAL CHARDEL

Input-Output Packages 67

8.6 EBCDIC and ASCII

All /O using TEXT_1O is performed using ASCI/EBCDIC translation. CHARACTER and
STRING values are held internally in ASCI but represented in external files in EBCDIC
For SEQUENTIAL _IO and DIRECT_10 no transtation takes place, and the external file

contains a binary image of the internal representation of the Ada element (sce section
8.

1t should be noted that the EBCDIC character set is larger than the (7 bit) ASCIH and that
the use of EBCDIC and ASCII control characters may not produce the desired results
when using TEXT_IO (the input and output of control characters is in any case not
defined by the Ada language [14.3]). Furthermore, the user is advised to exercise caution
in the use of BAR (|) and SHARP (#), which are part of the lexis of Ada; if their use 1s
prevented by translation between ASCII and EBCDIC, EXCIAM (!) and COLON (3),
respectively, should be used instcad {2.10].

Various translation tables exist to translate between ASCI and EBCDIC. The predefined
package EBCDIC is provided to allow access to the translation facilities used by TEXT_1O

and SYSTEM_ENVIRONMENT (sce Character Code Translarion Tables in the Compiler
User’s Guide).

The specification of this package is given in the Applicarion Developer's Guide, Section
4.1

68 Alsys IBM 370 Ada Compiler. Appendix F for VMICMS, MV'S and MVS/XA, v5

8.7 Characteristics of Disk Files

A disk file that has already been created and is opened takes on the charactenstics that
are already associated with that file.

The characteristics of disk files that are created using the predefined input-output
packages are set up as described below.

8.7.1 TEXT_IO

= A carriage control character is placed in column 1 if the carriage control attritate is
specified in the FORM parameter.

» Data is translated between ASCII and EBCDIC so that the external file is readable
using other System/370 tools.

« Under MVS and MVS/XA, TEXT_IO files are implemented as DSORG PS (QSAM)
datasets.

8.7.2 SEQUENTIAL_IO

= No translation is performed between ASCII and EBCDIC;, the data in the external

file is a memory image of the elements written, preceded by a descriptor in the case
of unconstrained types.

=« Under MVS and MVS/XA, SEQUENTIAL._IO files are implemented as DSORG PS
(QSAM) datasets.

8.7.3 DIRECT IO

s No translation is performed between ASCH and EBCDIC; the data in the external

file is a memory image of the elements written, preceded by a descriptor in the case
of unconstrained types.

« Under CMS DIRECT _IO files may be read using SEQUENTIAL_IO (and vice-versa if
a RECORD_SIZE component is specified).

s Under MVS and MVS/XA, DIRECT_IO files are implemented as DSORG DA

(BDAM) datasets. The first record contains the total number of records on the first
four bytes.

Input-Output Packages 69

70

Alsys IBM 370 Ada Compiler, Appendix F for VMICMS, MVS and MVSIXA, v5

CHAPTER 9

Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as follows:

SHORT_SHORT_INTEGER <128 ..127 - 22007 ..2%%7 .
SHORT_INTEGER -32768 .. 32767 - -2%015 20015 -1
INTEGER S2147483648 .. 2147483647 .- -2°°31..2*°31 -}

For the packages DIRECT_IO and TEXT_IQ, the ranges of values for types COUNT and
POSITIVE_COUNT are as follows:

COUNT 0..2147383647 -~0.2%*31-1

POSITIVE_COUNT 1..21474830647 -1.2%%31-1

For the package TEXT_IO, the range of values for the type FIELD is as follows:

FIELD 0..255 -0.2%8-1

Charactenistics of Numenc Types

71

9.2 Floating Point Type Attributes

SHORT_FLOAT

DIGITS

MANTISSA

EMAX

EPSILON

SMALL

LARGE

SAFE_EMAX
SAFE_SMALL
SAFE_LARGE

FIRST

LAST
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS
SIZE

[

21

84

20°° .20

2.0 -85
20*°84°(1.0-20°*-21)
252

20°*-253

20252 (1.0-20°*.21)
2.0252+(1.0-20°*-24)
20°°252°(1.0-20°%*-29)
16

6

63

64

FALSE

FALSFE

32

Approximate

value

9548407
2.58k-20
1.93E+25

691E-77
T24E+75

-7.24E+75

7248475

72 Alsys IBM 370 Ada Compiler, Appendux F for VMICMS, MVS and MVS/XA, v5

FLOAT

DIGITS

MANTISSA

EMAX

EPSILON

SMALL

LARGE

SAFE_EMAX
SAFE_SMALL
SAFE_LARGE

FIRST

LAST
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS
SIZE

Characteristics of Numeric Types

15

51

204

20°° 50

20°* 205

20°° 204 ° (10-20 % 51y
252

20 % 253
20°°252°(10-20*" .51y
202252 (1.0-20** -50)
20°°252°(10-20° -56)
16

14

63

6H3

FALSE

FALSE

64

Approximate
value

588116
19462
257 +61

6911:.-77
7.28E 475

21241+ 75

724K +75

73

LONG_FLOAT

DIGITS

MANTISSA

EMAX

EPSILON

SMALL

LARGE

SAFE_EMAX
SAFE_SMALL.
SAFE_LARGE

FIRST

[LLAST
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS
SIZE

IS

(33

244

20°* 60

20°°.245

207243 (10-20°" 61)
232

20°**.253
20°*252°(1.0-20°" 61y
-20°% 252 (1.0-20°*.112)
20°°252*(1.0-20°° .1 12)
10

28

63

64

FALSE

FALSE

128

9.3 Attributes of Type DURATION

DURATION'DELTA
DURATION'SMALL
DURATION'LARGE
DURATION'FIRST
DURATION'LAST

20 .14
20°° .14
131072.0
-131072.0
131¢71.0

Approximate
value

806719
177874
283E+73

69177
7.23E+75

T23E 4TS

7241+ 75

74 Alsys IBM 370 Ada Compiler, Appendux F for VMICMS, MVS and MVS/XA, v5

CHAPTER 10

Other Implementation-Dependent Characteristics

10.1 Characteristics of the Heap

All objects created by allocators go 1nto the program heap. In addition, poruons of the
Ada Run-Time Executive's representation of task objects, including the task stacks, are
allocated in the program heap.

All objects on the heap belonging 10 a given collection have their storage reclaimed on
exit from the innermost block statement, subprogram body or task body that encloses the
access type declaration associated with the collection. For access types declared at the
library level, this deallocation occurs only on completion of the main program.

There is no further automatic storage reciaimation performed, i.¢. in effect, all access
types are deemed to be controlled [4.8]. The explicit deallocation of the object
designated by an access value can be achieved by calling an appropriate tnstantiation of
the generic procedure UNCHECKED _DEALLOCATION.

Space for the heap is initially claimed from the system on program start up and
additional space may be claimed as required when the initial allocation is exhausted. The
size of both the initial allocation and the size of the individual increments claimed from
the system may be controlled by the Binder options SIZE and INCREMENT.
Corresponding run-time options also exist.

On an extended architecture machine space allocated from the program heap may be
above or below the 16 megabyte virtual storage line. The implementation defined

pragma RMODE (see section 1.5) is provided to control the residence mode of objects
allocated from the program heap.

Other Implementation-Dependent Characteristics 75

10.2 Characteristics of Tasks

The default initial task stack size i1s 16 Kbytes, but by using the Binder option TASK the
size for all task stacks in a program may be set to anv size from 4 Kbytes to 16 Mbytes. A
corresponding run-time option also exists.

If a task stack becomes exhausted during execution, it is automatically extended using
storage claimed from the heap. The TASK option specifies the minimum size of such an

extension, i.¢. the task stack is extended by the size actually required or by the value of
the TASK option, whichever is the larger.

Timeslicing 1s implemented for task scheduling. The default time slice is 1000
milliseconds, but by using the Binder option SLICE the time slice may be set to any
muljtiple of 10 milliseconds. A corresponding run-time option also exists. It is also
possible 1o use this option 10 specify no timeslicing, i.e. tasks are scheduled only at
explicit synchronisation points. Timeslicing is started only upon activation of the first
task in the program, so the SLICE option has no effect for sequential programs.

Normal priority rules are followed for preemption, where PRIORITY values run in the

range 1..10. A asks with "undefined” priority (no pragma PRIORITY) are considered
to have a priority of Q.

The minimum timeable delay is 10 miiliseconds.

The maximum number of active tasks is fimited only by memory usage. Tasks release
their storage allocation as soon as they have terminated.

The acceptor of a rendezvous executes the accept body code in its own stack. A

rendezvous with an empty accept body (e.g. for synchronisation) need not cause a context
switch.

The main program waits for completion of all 1asks dependent on library packages before

terminating. Such tasks may select a terminate alternative only after completion of the
main program.

Abnormal completion of an aborted task takes place immediately, except when the

abnormal task is the caller of an entry that is engaged in a rendezvous. Any such task
becomes abnormally completed as soon as the rendezvous is completed.

76 Alsvs IBM 370 Ada Compiler, Appendix F for VMICMS, MVS and MVS/XA, v5

If an aborted task is in another MVS system process, then the abort is guaranteed to take
cffect by the next synchronisation point |9.10].

If 4 global deadlock situation arises because every task (including the main program) is

waiting for another task, the program is aborted and the state of all tasks 1s displayed.

10.3 Definition of a Main Program

A main program must be a non-generic, parameteriess, library procedure.
10.4 Ordering of Compilation Units

The Alsys IBM 370 Ada Compiler imposes no additional ordering constraints on
compilations beyond those required by the language.

Other Implementation-Dependent Characteristics 77

78

Alsys IBM 370 Ada Compiler, Appendix F for VMICMS, MVS and MVS/XA, v5

“tADAIN 66
ScADAOUT 66

Access_type_name 8

Ada_identifier 6

ADDRESS attribute 14
restrictions 14

Append attribute 63

ARRAY DESCRIPTOR attribute 49

ASCII 68, 69
form feed 67
line feed 67

Attributes 11
ARRAY_DESCRIPTOR 49
DESCRIPTOR_SIZE 11
IS_ARRAY 11
RECORD_DESCRIPTOR 50
RECORD_SIZE 49, 59
SYSTEM.ADDRESS'IMPORT 12
VARIANT_INDEX 49

Binder 76
Binder options
SLICE 76
TASK 76
Block_size attribute 64, 66

Carriage_control attribute 62, 66
CHARACTER 68
Characteristics of disk files 69
CMS file name 55

Compilation unit ordering 77
COUNT N1

DDNAME 55, 56,57

DESCRIPTOR_SIZE attribute 11,61
DIRECT _IO 55,68, 71

Index

INDEX

DURATION
attributes 74

EBCDIC 68, 69
END_OF_FILE 63
EOF_STRING 67
Eof_string attribute 63, 66, 67
EXPORT 5
EXTERNAL_NAME 6

FIELD 71
File sharing attribute 59
FILEDEF command 55, 56
Fixed point types
DURATION 74
FLOAT 73
Floating point types 72
attributes 72
FLOAT 73
LONG_FLOAT 74
SHORT_FLOAT 72
FORM parameter
for MVS 64
for VM/CMS 59
FORM parameter attributes
append 63
block_size attribute 64, 66
carriage_control 62,66
eof_string 63, 66, 67
file sharing attribute S9
primary attribute 65
record_format attribute 60
record_size attribute 60, 66
secondary attribute 65
truncate 62
unit attribute 64
volume attribute 64

79

Fully quatified name 57

Implementation-dependent attributes
11
Implementation-dependent
characteristics
others 75
Implementation-dependent pragma 3
Implementation-generated names 49
IMPROVE 10
In-store file name S5, 56, 57
INDENT 7
INLINE 3
Input-Output
MVS 56
VM/CMS 35
Input-Output packages 55
DIRECT_IO 55
10_EXCEPTIONS 55
LOW_LEVEL 10 55
SEQUENTIAL 10 55
TEXT_lO 55
INTEGER 71
Integer types 71
COUNT 71
FIELD 71
INTEGER 71
POSITIVE_COUNT 71
SHORT_INTEGER 71
SHORT_SHORT_INTEGER 71
INTERFACE 3
INTERFACE_NAME 3,4
10_EXCEPTIONS 55
IS_ARRAY attribute 11

Language name 3
LONG_FLOAT 74
LOW_LEVEL 10 55

Main program

&0 Alsys IBM 370 Ada Compiler, Appendix F for VMICMS, MV'S and MVS/XA, v5

definiton 77
MAP _TASK ¢y
MVS dataset nume 56, 57
MVS file name
PARM stning 57
QUALIFIER paramecter 57

NAME parameter
for MVS 36,587
for VM/CMS 55
Name_string 6
NOT_SHARED 59
Numeric types
charactenstics 71
Fixed point types 74
Floating point tvpes 72
integer types 71

PACK 10

PARM string 57

POSITIVE_COUNT 71

Pragma EXTERNAL NAME
Ada_identifier 6
name_string 6

Pragma INLINE 3

Pragma INTERFACE 3
language name 3
subprogram_name 3

Pragma INTERFACE_NAME 3
string_literal 4
subprogram_name 4

Pragma MAP_TASK
task_type_name 9

Pragma RMODE
access_tlype_name §
residence_mode §

Pragmas
EXPORT 5
EXTERNAL NAME 6
IMPROVE 10

INDENT 7
INTERFACE 3
INTERFACE _NAMI: 4
MAP TASK v
PACK 10
PRIORITY 10,76
RMODE §
SUPPRESS 10
Primary attribute 65
PRIORITY 10
PRIORITY pragma 76

QUALIFIER parameter 57
RECORD_DESCRIPTOR attribute

50
Record_format attribute 60

RECORD_SIZE attribute 49, 39, 60,

66
Representation clauses 19
restrictions 19
Residence_mode 8
RMODE 8§

Secondary attribute 65
SEQUENTIAL _IO 55,68
SHARED 59
SHORT_FLOAT 72
SHORT_INTEGER 71
SHORT_SHORT_INTEGER 71
SLICE option 76

STANDARD _INPUT 66
STANDARD_OUTPUT 66
STRING 68

String literal 4
Subprogram_name 3,4
SUPPRESS 10

SYSTEM package 15
SYSTEM.ADDRESS' IMPORT

attrihute 12

SYSTEM_ENVIRONMENT 658

TASK option 76
Task_type_name 9
Tasks

characteristics 76

Timeslicing 70
Text terminators 67
TEXT_1O 55.63,71
Truncate attribute 62

Unchecked conversions 53
restrictions 53

Unit attribute 64

Unqualified name 57

USE_ERROR 59, 66

VARIANT INDEX attribute 49
Volume attribute 64

